【题目】如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
【答案】(1)y=x2﹣4x+6;(2)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,2)时,△CBD的周长最小
【解析】试题分析:(1)只需运用待定系数法就可求出二次函数的解析式;
(2)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
(3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
试题解析:
(1)把A(2,0),B(8,6)代入,得
解得:
∴二次函数的解析式为;
(2)由,得
二次函数图象的顶点坐标为(4,﹣2).
令y=0,得,
解得:x1=2,x2=6,
∴D点的坐标为(6,0);
(3)二次函数的对称轴上存在一点C,使得的周长最小.
连接CA,如图,
∵点C在二次函数的对称轴x=4上,
∴xC=4,CA=CD,
∴的周长=CD+CB+BD=CA+CB+BD,
根据“两点之间,线段最短”,可得
当点A、C、B三点共线时,CA+CB最小,
此时,由于BD是定值,因此的周长最小.
设直线AB的解析式为y=mx+n,
把A(2,0)、B(8,6)代入y=mx+n,得
解得:
∴直线AB的解析式为y=x﹣2.
当x=4时,y=4﹣2=2,
∴当二次函数的对称轴上点C的坐标为(4,2)时,的周长最小.
科目:初中数学 来源: 题型:
【题目】如图,已知∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=DC,BE=CF.求证:
(1)AF=DE
(2)若OP⊥EF,求证:OP平分∠EOF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.
(1)求M点的坐标及a,b的值;
(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,当m为多少时,s=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=45°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为点F.
(1)当点F落在AB上时,求∠BCF的度数;
(2)若∠EBF=15°,求CF的长;
(3)当点E从点A运动到点B时,求点F运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )
A. 12B. 10C. 8D. 不确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.
利用数形结合思想回答下列问题:
(1)数轴上表示1和3两点之间的距离 .数轴上表示-12和-6的两点之间的距离是 .
(2)数轴上表示x和-4的两点之间的距离表示为 .
(3)|x-2|+|x+4|的最小值为 时,能使|x-2|+|x+4|取最小值的所有整数x的和是 .
(4)若数轴上两点A、B对应的数分别是-1、3,现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,然后回答问题.在进行二次根式去处时,我们有时会碰上如, , 一样的式子,其实我们还可以将其进一步化简:
=(一)
=(二)
以上这种化简的步骤叫做分母有理化.
还可以用以下方法化简:
=(三)
请用不同的方法化简.
(1)参照(二)式得=______________________________________________;
(2)参照(三)式得=_________________________________________。
(3)化简:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com