【题目】如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交与点A1 , 且其对称轴分别交抛物线C,C1于点B1 , D1 , 此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x轴的正半轴交与点A2 , 且其对称轴分别交抛物线C1 , C2于点B2 , D2 , 此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3 . 请探究以下问题:
(1)填空:a1= , b1=;
(2)求出C2与C3的解析式;
(3)按上述类似方法,可得到抛物线Cn:yn=anx(x﹣bn)与正方形OBnAnDn(n≥1).
①请用含n的代数式直接表示出Cn的解析式;
②当x取任意不为0的实数时,试比较y2015与y2016的函数值的大小并说明理由.
【答案】
(1)1;2
(2)
解:y2=0时,a2x(x﹣b2)=0,
x1=0,x2=b2,
∴A2(b2,0),
由正方形OB2A2D2得:OA2=B2D2=b2,
∴B2( , ),
∵B2在抛物线c1上,则 =( )2﹣2× ,
b2(b2﹣6)=0,
b2=0(不符合题意),b2=6,
∴D2(3,﹣3),
把D2(3,﹣3)代入C2的解析式:﹣3=3a2(3﹣6),a2= ,
∴C2的解析式:y2= x(x﹣6)= x2﹣2x,
y3=0时,a3x(x﹣b3)=0,
x1=0,x2=b3,
∴A3(b3,0),
由正方形OB3A3D3得:OA3=B3D3=b3,
∴B3( , ),
∵B3在抛物线C2上,则 = ( )2﹣2× ,
b3(b3﹣18)=0,
b3=0(不符合题意),b3=18,
∴D3(9,﹣9),
把D3(9,﹣9)代入C3的解析式:﹣9=9a3(9﹣18),a3= ,
∴C3的解析式:y3= x(x﹣18)= ﹣2x;
(3)
解:①Cn的解析式:yn= x2﹣2x(n≥1).
②由上题可得抛物线C2015的解析式为:y2015= x2﹣2x,
抛物线C2016的解析式为:y2016= x2﹣2x,
∴两抛物线的交点为(0,0);
∴当x<0时,y2015<y2016;当x>0时,y2015>y2016.
【解析】解:(1)y1=0时,a1x(x﹣b1)=0,
x1=0,x2=b1 ,
∴A1(b1 , 0),
由正方形OB1A1D1得:OA1=B1D1=b1 ,
∴B1( , ),D1( ,﹣ ),
∵B1在抛物线c上,则 = ,
b1(b1﹣2)=0,
b1=0(不符合题意),b1=2,
∴D1(1,﹣1),
把D1(1,﹣1)代入y1=a1x(x﹣b1)中得:﹣1=﹣a1 ,
∴a1=1,
故答案为:1,2;
(1)求与x轴交点A1坐标,根据正方形对角线性质表示出B1的坐标,代入对应的解析式即可求出对应的b1的值,写出D1的坐标,代入y1的解析式中可求得a1的值;(2)求与x轴交点A2坐标,根据正方形对角线性质表示出B2的坐标,代入对应的解析式即可求出对应的b2的值,写出D2的坐标,代入y2的解析式中可求得a2的值,写出抛物线C2的解析式;再利用相同的方法求抛物线C3的解析式;(3)①根据图形变换后二次项系数不变得出an=a1=1,由B1坐标(1,1)、B2坐标(3,3)、B3坐标(7,7)得Bn坐标(2n﹣1,2n﹣1),则bn=2(2n﹣1)=2n+1﹣2(n≥1),写出抛物线Cn解析式.②先求抛物线C2015和抛物线C2016的交点为(0,0),在交点的两侧观察图形得出y2015与y2016的函数值的大小.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.
(1)求证:AC平分∠DAB;
(2)探究线段PC,PF之间的大小关系,并加以证明;
(3)若tan∠PCB= ,BE= ,求PF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下两小题后作出相应的解答:
(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等“的逆命题,并指出逆命题的题设和结论;
(2)根据以下语句作出图形,并写出该命题的文字叙述.
已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BC=a,AC=b,AB=c(b<c<a),BC的垂直平分线DG交∠BAC的角平分线AD于点D,DE⊥AB于E,DF⊥AC于F,则下列结论一定成立的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数3.3,-2,0,,-3.5.
(1) 比较这些数的大小,并用“<”号连接起来;
(2) 比较这些数的绝对值的大小,并将这些数的绝对值用“>”号连接起来;
(3) 比较这些数的相反数的大小,并将这些数的相反数用“<”号连接起来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB、BC、AC三边的长分别为, , ,求这个三角形的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)△ABC的面积为 .
(2)若△DEF的三边DE、EF、DF长分别为, , ,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD(D与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一矩形纸片OABC放在平面直角坐标系中,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=8,如图在OC边上取一点D,将△BCD沿BD折叠,使点C恰好落在OA边上,记作E点;
(1)求点E的坐标及折痕DB的长;
(2)在x轴上取两点M、N(点M在点N的左侧),且MN=4.5,求使四边形BDMN的周长最短的点M、点N的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD中,E是CD上的一点连接AE、BE,如图给出四个条件:①AE平分∠BAD,②BE平分∠ABC,③AE⊥EB,④AB=AD+BC,请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com