精英家教网 > 初中数学 > 题目详情

【题目】如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有(  )

AMBN;AM=BN;BC=ML;④∠ACB=MNL。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】分析:如图,由ABC平移得到MNL可知AMBNCL是对应点,根据平移的特征得:AMBNCLAM=BN=CLABCMNL的形状、大小完全相同.从而进行判断即可.

详解:根据平移前后连接对应点的线段平行且相等可知:

AMBN正确,AM=BN正确;

根据平移前后ABCMNL的形状、大小完全相同可知

BC=NL、∠ACB=∠MLN,所以:BC=ML错误,④∠ACB=∠MNL错误.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′C′分别是BC的对应点.

1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;

2)若连接AA′CC′,则这两条线段之间的关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:

1)汽车在前9分钟内的平均速度是多少?

2)汽车在中途停了多长时间?

316≤t≤30时,求St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过15(15)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.

(1)求每吨水的政府补贴优惠价与市场调节价分别是多少;

(2)小明家3月份用水24吨,他家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交与点A1 , 且其对称轴分别交抛物线C,C1于点B1 , D1 , 此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x轴的正半轴交与点A2 , 且其对称轴分别交抛物线C1 , C2于点B2 , D2 , 此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3 . 请探究以下问题:

(1)填空:a1= , b1=
(2)求出C2与C3的解析式;
(3)按上述类似方法,可得到抛物线Cn:yn=anx(x﹣bn)与正方形OBnAnDn(n≥1).
①请用含n的代数式直接表示出Cn的解析式;
②当x取任意不为0的实数时,试比较y2015与y2016的函数值的大小并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,则阴影部分的面积是____cm2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:

(1)如果∠1=∠B,那么______________,根据是__________________________

(2)如果∠3=∠D,那么______________,根据是__________________________;

(3)如果要使BE∥DF,必须∠1=∠_______,根据是_________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-1,3)的对应点A′的坐标是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理过程,请填空.

解:∵OA⊥OB(已知)

所以_____=90°________

因为_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代换)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

同步练习册答案