【题目】如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是( )
A.AB和CDB.AB和EFC.CD和GHD.EF和GH
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线的图象与反比例函数的图象交于点.
(1)求、的值;
(2)点是轴上的一点,过点作轴的垂线,交直线于点,交反比例函数的图象于点.横、纵坐标都是整数的点叫做整点.记的图象在点,之间的部分与线段,围成的区域(不含边界)为.
①当时,直接写出区域内的整点的坐标为______;
②若区域内恰有6个整点,结合函数图象,求出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,直线PQ与⊙O相切于点C,以OB,BC为边作OBCD,连接AD并延长交⊙O于点E,交直线PQ于点F.
(1)求证:AF⊥CF;
(2)连接OC,BD交于点H,若tan∠OCB=3,⊙O的半径是5,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l及直线l外一点P.如图,
(1)在直线l上取一点A,连接PA;
(2)作PA的垂直平分线MN,分别交直线l,PA于点B,O;
(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;
(4)作直线PQ.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.△OPQ≌△OABB.PQ∥AB
C.AP=BQD.若PQ=PA,则∠APQ=60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是直径AB上一定点,E,F分别是AD,BD的中点,P是上一动点,连接PA,PE,PF.已知AB=6cm,设A,P两点间的距离为xcm,P,E两点间的距离为y1cm,P,F两点间的距离为y2cm.
小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小腾的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0.97 | 1.27 |
| 2.66 | 3.43 | 4.22 | 5.02 |
y2/cm | 3.97 | 3.93 | 3.80 | 3.58 | 3.25 | 2.76 | 2.02 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;
(3)结合函数图象,解决问题:当△PEF为等腰三角形时,AP的长度约为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,点D为BC边的中点,以AD为直径作⊙O,分别与AB,AC交于点E,F,过点E作EG⊥BC于G.
(1)求证:EG是⊙O的切线;
(2)若AF=6,⊙O的半径为5,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品 | 甲 | 乙 |
进价(元/件) | x60 | x |
售价(元/件) | 200 | 100 |
若用1800元购进甲种商品的件数与用900元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共100件,其中销售甲种商品为a件(a40),设销售完100件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:
身高情况分组表(单位:cm)
组别 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的人数有 人;
(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点M为BC中点.点P为AB边上一动点,点D为BC边上一动点,连接DP,以点P为旋转中心,将线段PD逆时针旋转90°,得到线段PE,连接EC.
(1)当点P与点A重合时,如图2.
①根据题意在图2中完成作图;
②判断EC与BC的位置关系并证明.
(2)连接EM,写出一个BP的值,使得对于任意的点D总有EM=EC,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com