精英家教网 > 初中数学 > 题目详情
16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用 A1,A2,A3,A4,…表示,则顶点A2013的坐标是(-504,-504).

分析 根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2013除以4,根据商和余数判断出点A2013所在的正方形以及所在的象限,再利用正方形的性质写出即可.

解答 解:∵每个正方形都有4个顶点,
∴每4个点为一个循环组依次循环,
∵2013÷4=503…1,
∴点A2013是第504个正方形的第1个顶点,在第三象限,
∵从内到外正方形的边长依次为2,4,6,8,…,
∴A1(-1,-1),A5(-2,-2),A9(-3,-3),…,A2013(-504,-504).
故答案为:(-504,-504).

点评 本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A2013所在的正方形和所在的象限是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.先化简,再求值:$\frac{{x}^{2}+2x}{1+x}$÷(x-$\frac{2}{x+1}$),其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.观察下列各等式:

这些等式反映出自然数间的某种规律,设n为自然数,试用关于n的等式表示出你所发现的规律:(n+2)2-n2=4(n+1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,点E在边AB上,且BE=BC,过点E作EF∥AC,交CD于F点,连接BF.
(1)若BC=10,BD=6,求线段EF的长;
(2)求证:∠CBF=45°-$\frac{1}{2}$∠DCB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为65°或115°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,正方形DEAF内接于△ABC,已知AC=8,AB=16,那么正方形的边长是$\frac{16}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线经过A(-1,0),B(3,0),C(-2,5)三点,与y轴交于点D.
(1)求抛物线的解析式;
(2)连结BC、CD、BD,求tan∠BCD;
(3)△BCD的外接圆⊙M与x轴的另一个交点为E,与y轴的另一个交点为F.
①连结DE、EF,求△DEF的面积;
②抛物线上是否存在点P,使得∠BDP=∠BCD?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:AB、CD为⊙O两条直径,点P为$\widehat{AD}$上一动点,过点P作AB、CD的垂线,垂足分别为点M、N.
(1)如图1,连接BC.求证:∠P=2∠B;
(2)如图2,延长PM、PN分别交⊙0于点E、F,连接EF,过点C作CG⊥AB,垂足为点G,延长CG交⊙0于点H.求证:EF=CH;
(3)在(2)的条件下,如图3,当点F与点B重合时,连接GP,若EF=BG,AG=5,求△GMP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2-7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标.
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案