精英家教网 > 初中数学 > 题目详情

【题目】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.

1)如图1,过点A画线段AF,使AFDC,且AF=DC

2)如图1,在边AB上画一点G,使∠AGD=BGC

3)如图2,过点E画线段EM,使EMAB,且EM=AB

【答案】1)作图见解析;(2)作图见解析;(3)作图见解析.

【解析】

1)作平行四边形AFCD即可得到结论;

2)根据等腰三角形的性质和对顶角的性质即可得到结论;

3)作平行四边形AEMB即可得到结论.

1)如图所示,线段AF即为所求;

2)如图所示,点G即为所求;

3)如图所示,线段EM即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学以致用:问题1:怎样用长为的铁丝围成一个面积最大的矩形?

小学时我们就知道结论:围成正方形时面积最大,即围成边长为的正方形时面积最大为.请用你所学的二次函数的知识解释原因.

思考验证:问题2:怎样用铁丝围一个面积为且周长最小的矩形?

小明猜测:围成正方形时周长最小.

为了说明其中的道理,小明翻阅书籍,找到下面的结论:

均为正实数)中,若为定值,则,只有当时,有最小值

思考验证:证明:均为正实数)

请完成小明的证明过程:

证明:对于任意正实数

  

解决问题:

1)若,则  (当且仅当  时取

2)运用上述结论证明小明对问题2的猜测;

3)填空:当时,的最小值为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图像如图所示.

1)当时,说明这个二次函数的图像与x轴必有两个交点;

2)如图情况下,若,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18.设这个苗圃园垂直于墙的一边的长为x

1)用含x的代数式表示平行于墙的一边的长为____米,.x的取值范围为____

2)这个苗圃园的面积为88平方米时,求x的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90°,点PAC边上的一点,延长BP至点D,使得AD=AP,当ADAB时,过DDEACEAB-BC=4AC=8,则ABP面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB和△DCE均为等腰三角形,点ADE在同一条直线上,BCAE相交于点O,连接BE,若∠CAB=CBA=CDE=CED=50°。

1)求证:AD=BE

2)求∠AEB。  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A80)和点B06),点CAB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC为等腰直角三角形,∠ACB=90°,抛物线经过AB两点,其中点AC的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D

(1)求抛物线的解析式;

(2)点E是直角三角形ABC斜边AB上的一个动点(不与AB重合),过点Ex轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;

(3)在(2)的条件下,抛物线上是否存在一点P,使PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4BC=6EBC边的中点,点P在线段AD上,过PPFAEF,设PA=x

1)求证:PFA∽△ABE

2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点PFE为顶点的三角形也与ABE相似?若存在,请求出x的值;若不存在,请说明理由;

3)探究:当以D为圆心,DP为半径的⊙D线段AE只有一个公共点时,请直接写出x满足的条件:   

备用图

查看答案和解析>>

同步练习册答案