【题目】如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为_____
【答案】15
【解析】
根据等腰三角形的性质得到∠CBP=∠ABP,设AB的长为x,则BC可用x表示,用勾股定理建立方程即可解出x;要求△ABP的面积,只需求出AB边上的高即可.
∵∠C=90°,
∴∠CBP+∠BPC=90°,
∵DA⊥BA,
∴∠PBA+∠BDA=90°,
∵AD=AP,
∴∠BDA=∠DPA=∠BPC,
∠CBP=∠ABP,
设AB=x,
∵AB-BC=4,
∴BC=x-4,
∵AC=8,
∴在Rt△ABC中,(x-4)2+64=x2,
解得:x=10,
即AB=10,
∴BC=6,
过点P作PF⊥BA于点F,如图,
在△BCP和△BFP中,
,
∴△BCP≌△BFP(AAS),
∴BF=BC=6,PF=PC,
∴AF=4,
设PF=PC=y,
在Rt△PAF中,16+y2=(8-y)2,
解得:y═3,
即PF=3,
∴S△ABP=ABPF=×10×3=15.
故答案为:15.
科目:初中数学 来源: 题型:
【题目】已知:直线m∥n,点A,B分别是直线m,n上任意两点,在直线n上取一点C,使BC=AB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.
(1)如图1,当点E在线段AC上,且∠AFE=30°时,求∠ABE的度数;
(2)若点E是线段AC上任意一点,求证:EF=BE;
(3)如图2,当点E在线段AC的延长线上时,若∠ABC=90°,请判断线段EF与BE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,均为等边三角形,点,,在同一条直线上,连接,,与相交于点,与相交于点,连接,下列结论正确的有_________.
①;②;③;④;⑤平分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC三边分别为、、,根据下列条件能判断△ABC为直角三角形的有 ( )
①∠A=∠B+∠C;②∠A:∠B:∠C=3:4:5;③;④,,
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.
(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE= cm;
(2)当t为多少时,△ABD的面积为12 cm2?
(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为线段上一动点(不与点重合),在同侧分别作等边三角形和等边三角形与交于点,与交于点,与交于点,连结.以下结论:①;②;③;④是等边三角形,恒成立的是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D是Rt△ABC斜边AB的中点,过点B、C分别作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=,求CD的长;
(2)求证:BC⊥DE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com