【题目】如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.
(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE= cm;
(2)当t为多少时,△ABD的面积为12 cm2?
(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.
【答案】(1)3t,t;(2)t为s或s;(3)见解析.
【解析】
(1)根据路程=速度×时间,即可得出结果;
(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值即可;
(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.
(1)根据题意得:CD=3tcm,CE=tcm;
故答案为:3t,t;
(2)∵S△ABDBDAH=12,AH=4,
∴AH×BD=24,
∴BD=6.
若D在B点右侧,则CD=BC﹣BD=2,t;
若D在B点左侧,则CD=BC+BD=14,t;
综上所述:当t为s或s时,△ABD的面积为12 cm2;
(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动4秒时,△ABD≌△ACE.
理由如下:
①当E在射线CM上时,D必在CB上,则需BD=CE.如图所示,
∵CE=t,BD=8﹣3t
∴t=8﹣3t,
∴t=2,
∵在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS).
②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.如图,
∵CE=t,BD=3t﹣8,
∴t=3t﹣8,
∴t=4,
∵在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS).
科目:初中数学 来源: 题型:
【题目】如图①是由8个同样大小的立方体组成的魔方,体积为8.
(1)求出这个魔方的棱长;
(2)图①中阴影部分是一个正方形,求出阴影部分的面积及其边长.
(3)把正方形放到数轴上,如图②,使得点与重合,那么点在数轴上表示的数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.
(1)求教学楼与旗杆的水平距离AD;(结果保留根号)
(2)求旗杆CD的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有________.(请写出所有正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为,OP=1,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数
(1)m= 时,函数图像与x轴只有一个交点;
(2)m为何值时,函数图像与x轴没有交点;
(3)若函数图像与x轴交于A、B两点,与y轴交于点C,且△ABC的面积为4,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,点E、F分别在边BC、AB上,且DE∥AB,∠DEF=∠A.
(1)求证:BE=AF;
(2)设BD与EF交于点M,联结AE交BD于点N,求证:BNMD=BDND.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形AOB中,A,B两点的坐标分别为(2,4),(6,2).
(1)将线段AB先向左平移m个单位长度再向下平移n个单位长度,得到对应线段CD(点A与点C对应,点B和点D对应),使得点C在x轴上,并且点D在y轴上.
①画出线段CD;
②直接写出线段AB在两次平移过程中扫过的总面积为_______;
(2)岩三角形AOB外的点P,满足:三角形AOP、三角形ABP和三角形BOP的面积都相等则点P的坐标可能为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com