【题目】如图,为线段上一动点(不与点重合),在同侧分别作等边三角形和等边三角形与交于点,与交于点,与交于点,连结.以下结论:①;②;③;④是等边三角形,恒成立的是______.
【答案】①②③④
【解析】
①由△ABC和△CDE都是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,所以∠ACD=∠BCE=120°,所以△ACD≌△BCE(SAS),从而AD=BE,故①正确;②④由△ACD≌△BCE得∠CBE=∠DAC,加之AC=BC,易得∠ACB=∠BCQ=60°,可证△CQB≌△CPA(ASA),从而CP=CQ,再加之∠PCQ=60°,可推出△PCQ为等边三角形,易得∠PQC=60°=∠DCE,根据内错角相等,两直线平行,可知②④正确;③结合△ACD≌△BCE和三角形的外角的性质,可得∠AOB=60°,故③正确.
解:①∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∵在△ACD与△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE,
故①正确;
④②∵△ACD≌△BCE,
∴∠CBE=∠DAC,
∵由∠ACB=∠DCE=60°得∠BCD=60°,
∴∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°
∴△PCQ为等边三角形,
∴∠PQC=60°,
∴∠PQC=60°=∠DCE
∴PQ∥AE
故②④正确;
③∵△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,
又∵∠ACB=∠CBE+∠CEB=60°,
∴∠AOB=∠ACB=60°,
故③正确.
故答案为:①②③④.
科目:初中数学 来源: 题型:
【题目】某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
经过计算,甲进球的平均数为8,方差为3.2.
(1)求乙进球的平均数和方差;
(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,AB=BC,∠B=60°,E是BC边上一点.
(1)如图1,若E是BC的中点,∠AED=60°,求证:CE=CD;
(2)如图2,若∠EAD=60°,求证:△AED是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数,
(1)通过配方,写出其对称轴,顶点坐标;
(2)分别求出其与轴、轴的交点坐标;
(3)画出函数的大致图象,结合图象说明,当取何值时,?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点,在反比例函数图象上,轴于点,轴于点,.
(1)求,的值并写出反比例函数的表达式;
(2)连接,是线段上一点,过点作轴的垂线,交反比例函数图象于点,若,求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】莫小贝在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC 的面积.
(1)莫小贝所画的△ABC 的三边长分别是AB=_______,BC=______,AC=______;△ABC 的面积为________.
(2)已知△ABC 中,AB=,BC=,AC=,请你根据莫小贝的思路,在图2中画出△ABC ,并直接写出△ABC的面积_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接矩形,已知矩形的高AC=2米,宽CD=米.
(1)求此圆形门洞的半径;
(2)求要打掉墙体的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和关于原点O成中心对称图形,画出图形并写出的各顶点的坐标;
(2)将△ABC绕着点O按顺时针方向旋转90°得到,画出图形,求出线段AC扫过部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com