精英家教网 > 初中数学 > 题目详情

【题目】如图,等边△ABC的边长是2DE分别为ABAC的中点,延长BC至点F,使CF=BC,连接CDEF

1)求证:DE=CF

2)求EF的长.

【答案】见解析;

【解析】试题分析:(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC

2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长

试题解析:(1)证明:∵DE分别为ABAC的中点, ∴DEBC

延长BC至点F,使CF=BC∴DEFC, 即DE=CF

2)解:∵DEFC四边形DEFC是平行四边形, ∴DC=EF

∵DAB的中点,等边△ABC的边长是2∴AD=BD=1CD⊥ABBC=2∴DC=EF=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCDCGEF分别是边长为xcmycm的正方形,

1)用含xy的代数式表示图中阴影部分的面积.

2)当x24y20时,求此阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB=8cmAD=12cm,点PAD 边上以每秒1cm的速度从点A向点D运动,点QBC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以PDQB四点组成平行四边形的次数有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,网格图中小方格都是边长为1个单位长度的小正方形,已知三角形ABC的三个顶点都在网格的格点上,按要求完成下列各小题.

(1)请在图中画出将三角形ABC先向上平移1个单位长度,再向右平移3个单位长度后的图形,即三角形A′B′C′,并指出图中相等的线段;

(2)在(1)的基础上,A′B′,B′C′分别与AC交于点E,F.若∠A=50°,∠C′=51°,分别求出∠A′EF与∠B′FC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.

(1)求抛物线的解析式;
(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;
(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知把长方形纸片ABCD沿EF折叠后,D与点B重合,C落在点C′的位置上,若∠1=60°AE=2

1)求∠2,∠3的度数.

2)求长方形ABCD的纸片的面积S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲骑电瓶车,乙骑自行车从相距17km的两地相向而行.

1)甲、乙同时出发经过0.5h相遇,且甲每小时行程是乙每小时行程的3倍少6km.求乙骑自行车的速度.

2)若甲、乙骑行速度保持与(1)中的速度相同,乙先出发0.5h,甲才出发,问甲出发几小时后两人相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为

查看答案和解析>>

同步练习册答案