【题目】如图,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC边上一点(不与B、C重合),连结AP,过P点作PE交DC于E,使得∠APE=∠B.
(1)求证:△ABP∽△PCE;
(2)求腰AB的长;
(3)在底边BC上是否存在一点P,使得DE:EC=5:3.如果存在,求出BP的长;如果不存在,请说明理由。
【答案】(2)4cm(3)BP=1cm或BP=6cm
【解析】试题分析:(1)欲证△ABP∽△PCE,需找出两组对应角相等;由等腰梯形的性质可得出∠B=∠C,根据三角形外角的性质可证得∠EPC=∠BAP;由此得证;
(2)可过作AF⊥BC于F,由等腰梯形的性质得到AF是BC、AD差的一半,在Rt△ABF中,根据∠B的度数及BF的长即可求得AB的值;
(3)在(2)中求得了AB的长,即可求出DE:EC=5:3时,DE、CE的值.设BP的长为x,进而可表示出PC的长,然后根据(1)的相似三角形,可得出关于AB、BP、PC、CE的比例关系式,由此可得出关于x的分式方程,若方程有解,则x的值即为BP的长.若方程无解,则说明不存在符合条件的P点.
试题解析:证明:(1)∠BAP+∠BPA=120°
∠APB+∠CPE=120°
∴∠BAP=∠CPE
又∠ABP=∠PCE
∴△ABP∽△PCE
(2)过A、D分别作AG⊥BC,DH⊥BC
易得四边形AGHD是矩形
GH=AD=3cm
∴cm
在Rt△ABG中
cm
(3)由DE:EC=5:3
∴, .
又△ABP∽△PCE
∴
即
BP(7-BP)=6
BP=1cm或BP=6cm
科目:初中数学 来源: 题型:
【题目】三角形的两边长分别为3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长是( )
A. 12B. 13C. 15D. 12或15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将点A(﹣1,1)向右平移2个单位长度得到点B,则点B关于x轴的对称点B的坐标为( )
A. (﹣3,﹣1)B. (1,﹣1)C. (﹣1,1)D. (﹣1,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列四种说法:①顶点在圆心的角是圆心角;②两个圆心角相等,它们所对的弦也相等;③两条弧的长度相等,则这两条弧所对的圆心角相等;④在等圆中,圆心角不等,所对的弦也不等.其中正确的是______.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com