精英家教网 > 初中数学 > 题目详情

【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三

角形?(只需把结果填在表中)


7

8

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

【答案】见解析

【解析】试题分析:(1)、根据给出的解题方法得出答案;(2)、根据题意将表格填写完整;应用:(1)、根据题意得出k的值,从而得出三角形的个数;根据三角形的性质得出答案.

试题解析:探究二

(1)、若分成1根木棒、1根木棒和5根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形

若分为3根木棒、3根木棒和1根木棒,则能搭成一种等腰三角形

(2)、所以,当时,


7

8

9

10


2

1

2

2








-1



问题应用:(1)∵2016=4×504 所以k=504, 则可以搭成k-1=503个不同的等腰三角形;

(2)672

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣2x+12+3的顶点坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2xay4和-x2yb是同类项,则a-b=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC一边上的高,BFACBE=AC.(1)求证:AD=BD;(2)若∠C=65°,求∠ABE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm

(1)请直接写出第5节套管的长度;

(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=2x2y=﹣2x2y=x2共有的性质是(  )
A.开口向下
B.对称轴是y轴
C.都有最低点
D.y的值随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”

【探究证明】

(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;

(2)如图2,求证:∠OAB=∠OAE′

【归纳猜想】

(3)图1、图2中的“叠弦角”的度数分别为

(4)图n中,“叠弦三角形” 等边三角形(填“是”或“不是”)

(5)图n中,“叠弦角”的度数为 (用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】木工师傅用两颗水泥钉就能将一根木条固定在墙壁上,这样做的数学依据是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或,这个点叫做它们的.这两个图形在旋转后能重合的对应点叫做关于对称中心的.

查看答案和解析>>

同步练习册答案