【题目】同学们都知道,|2-(-1)|表示2与-1的差的绝对值,实际上位可理解为在数轴上正数2对应的点与负数一1对应的点之间的距离,试探索:
(1)|2-(-1)|=______;如果|x-1|=2,则x=______.
(2)求|x-2|+|x-4|的最小值,并求此时x的取值范围;
(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,求x+y的最大值与最小值;
(4)由以上探索及猜想,计算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.
【答案】(1)3,3或-1;(2)当-4≤x≤2时,|x-2|+|x+4|的值有最小值,最小值为6;(3)x+y的最大值是5,最小值是-3;(4)当x=1009.5时,式子取得最小值,为509076.
【解析】
(1)根据绝对值的意义直接计算即可;
(2)把|x-2|+|x+4|理解为:在数轴上表示x到-4和2的距离之和,根据两点间的距离公式,点在线段上,可得最小值,从而得结论;
(3)先确定x、y的取值范围,再分类讨论.
(4)观察已知条件可以发现,|x-a|表示x到a的距离.要是题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.
(1)|2-(-1)|=|2+1|=3,
|x-1|=2,
x-1=2或x-1=-2,
x=3或-1,
故答案为:3,3或-1;
(2)∵|x-2|+|x-4|理解为:在数轴上表示x到-4与2的距离之和,
∴当x在-4与2之间的线段上(即-4≤x≤2)时,|x-2|+|x+4|的值有最小值,最小值为2-(-4)=6,此时x的取值范围为:-4≤x≤2.
(3)因为x-2=0,x+4=0时,x=2或-4,y-1=0,y-6=0时,y=1或6.
当x<-4时,|x-2|+|x+4|=2-x-x-4=-2x-2;当-4<x<2时,|x-2|+|x+4|=2-x+x+4=6;当x>2时,|x-2|+|x+4|=x-2+x+4=2x+2;
当y<1时,|y-1|+|y-6|=1-y+6-y=-2y+7;当1<y<6时,|y-1|+|y-6|=y-1+6-y=5;当y>6时,|y-1|+|y-6|=y-1+y-6=2y-7;
当x<-4,y<1时,(-2x-2)(-2y+7)=10,
所以-2x+1-2y+1=8,即x+y=-3;-2x+1+3=8,即x=-4;-2x+1+2y-1=8,即x-y=-4;5-2y+1=8,即y=-1;5+3=8;5+2y-1=8,即y=2;2x-1-2y+1=8,即x-y=4;2x-1+3=8,即x=3;2x-1+2y-1=8,即x+y=5.
所以x+y的最大值是5,最小值是-3.
(4)由已知条件可知,|x-a|表示x到a的距离,只有当x到1的距离等于x到2018的距离时,式子取得最小值.
∴当x==1009.5时,式子取得最小值,
此时,|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|,
=|1009.5-1|+|1009.5-2|+|1009.5-3|+…+|1009.5-2016|+|1009.5-2017|+|1009.5-2018|,
=1008.5+1007.5+…+2.5+1.5,
=0.5×1008+(1+2+3…+1008),
=504+=504+508536,
=509076.
科目:初中数学 来源: 题型:
【题目】在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点F为对角线BD上一点,点E为AB的延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.
(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB= ,E是 的中点,求EGED的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?
(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;
(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解答过程:
若二次三项式x2-4x+m有一个因式是x+3,求另一个因式及m的值.
解:设另一个因式为x+a
则x2-4x+m=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,
∴∴
∴另一个因式为x-7,m的值为-21.
请依照以上方法解答下面问题:
(1)已知二次三项式x2+3x-k有一个因式是x-5,求另一个因式及k的值;
(2)已知二次三项式2x2+5x+k有一个因式是x+3,求另一个因式及k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com