【题目】如图,在菱形ABCD中,点F为对角线BD上一点,点E为AB的延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.
【答案】(1)证明见解析;(2)∠CFE=60°.
【解析】(1)根据菱形的性质得出CD=CB,又DF=BE,CF=CE,根据SSS即可证明△CFD≌△CEB;
(2)根据全等三角形、菱形的性质得出∠ABD=∠CBD=∠CDB=∠CBE,由平角的定义求出∠ABD=∠CBD=60°,再证明∠FCE=60°,那么由CF=CE,得出△AFE是等边三角形,于是∠CFE=60°.
证明:(1)∵四边形 ABCD是菱形,∴CD=CB.
在△CFD和△CEB中, ∴△CFD≌△CEB.
(2)∵△CFD≌△CEB,∴∠CDB=CBE, ∠DCF=∠BCE.∵CD=CB,
∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°,∴∠DCB=60°,
∴∠FCE=∠FCB+∠BCE=∠FCB+∠DCF=60°.
又CF=CE,∴△CFE为等边三角形,∴∠CFE=60°.
“点睛”本题考查了菱形的性质:①菱形具有平行四边形的一般性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了全等三角形、等边三角形的判定与性质.
科目:初中数学 来源: 题型:
【题目】多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)180°.例如:如图四边形ABCD的内角和:N=∠A+∠B+∠C+∠D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( )
A. (﹣1,) B. (﹣2,) C. (﹣,1) D. (﹣,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两地相距900km,一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,行了4小时后两车相遇,快车的速度是慢车速度的2倍.
(1)请求出慢车与快车的速度?
(2)两车出发后多长时间,它们相距225千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算及解方程:
(1)-4-28-(-19)+(-24)
(2)-12-(-2)3-2(-3)
(3)(a+3b)-(a-b)
(4)3(m2-2n2)-2(m2-3n2)
(5)2(2x﹣3)﹣3=2﹣3(x﹣1)
(6)-1=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们都知道,|2-(-1)|表示2与-1的差的绝对值,实际上位可理解为在数轴上正数2对应的点与负数一1对应的点之间的距离,试探索:
(1)|2-(-1)|=______;如果|x-1|=2,则x=______.
(2)求|x-2|+|x-4|的最小值,并求此时x的取值范围;
(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,求x+y的最大值与最小值;
(4)由以上探索及猜想,计算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.
(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com