精英家教网 > 初中数学 > 题目详情

【题目】低碳生活,绿色出行,自行车成为人们喜爱的交通工具.某品牌共享自行车在温州的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000.

(1)该品牌共享自行车前3个月的投放量的月平均增长率相同,则这三个月一共投放了多少辆自行车?

(2)考虑到增强客户体验,该品牌共享自行车准备投入3万元向自行车生产厂商定制了一批两种规格比较高档的自行车,之后投放到某高端写字楼区域.已知自行车生产厂商生产A型车的成本价为300/辆,售价为500/辆,生产B型车的成本价为700/辆,售价为1000/.根据指定要求,B型车的数量需超过12辆,且A型车的数量不少于B型车的2.自行车生产厂商应如何设计生产方案才能获得最大利润?最大利润是多少?

【答案】(1)这3个月一共投放了2440辆车.(2)生产A型车34辆,B型车13辆,生产商有最大利润为10700.

【解析】

(1)设前3个月的月平均增长率为x,根据题意列出方程即可求出答案.(2)设生产B型车x根据题意列不等式组,解不等式组得x13、14、15、根据利润(W)的解析式可知Wx的增大而减小,所以x13时利润最大,通过解析式求出利润即可.

(1)设前3个月的月平均增长率为x,根据题意得

解得(舍去)

(辆)

答:这3个月一共投放了2440辆车.

(2)①设生产B型车x辆,则生产A型车辆,根据题意,

解得

x为正整数,∴x=13,14,15

设生产产商的利润为W,由题意得

W=(500-300)(60-2x)+(1000-700)x=12000-100x

k=-100<0,Wx的增大而减小

∴当x=13时,. (辆)

答:生产A型车34辆,B型车13辆,生产商有最大利润为10700.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD是边长为4的正方形,点P是平面内一点.且满足BP⊥PC,现将点P绕点D顺时针旋转90度,则CQ的最大值=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC边上的高,∠B30°,∠ACB100°AE平分∠BAC,求∠EAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB90°,点CD分别在射线OAOB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F

1)当∠OCD56°(如图①),试求∠F

2)当CD在射线OAOB上任意移动时(不与点O重合)(如图②),∠F的大小是否变化?若变化,请说明理由若不变化求出∠F

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,在△ABC,BAC=90AB=AC,直线m经过点ABD⊥直线mCE⊥直线m,垂足分别为点D.E证明:DE=BD+CE.

(2)如图②,(1)中的条件改为:在△ABC中,AB=ACD. A.E三点都在直线m上,并且有∠BDA=AEC=BAC,请问结论DE=BD+CE是否成立,若成立,请你给证明:若不存在,请说明理由。

(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>CAED. A.E三点都在直线m上,且∠BDA=AEC=BAC,只出现mBC的延长线交于点F,若BD=5DE=7EF=2CE,求△ABD与△ABF的面积之比。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形网格上有6个三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中与①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形一腰上的中线将三角形的周长分为9cm15cm两部分,求这个等腰三角形的底边长和腰长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.

(1)求证:四边形BEDF是菱形;

(2)若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.

解:设所求方程的根为y,则y=2x,所以x=,把x=,代入已知方程,

得(2 +﹣1=0.

化简,得y2+2y﹣4=0,

故所求方程为y2+2y﹣4=0

这种利用方程根的代换求新方程的方法,我们称为换根法”.

请用阅读材料提供的换根法求新方程(要求:把所求方程化为一般形式):

(1)已知方程x2+2x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为

(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.

查看答案和解析>>

同步练习册答案