精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中有点B(20)y轴上的动点A(0a),其中a>0,以点A为直角顶点在第二象限内作等腰直角三角形ABC,设点C的坐标为(cd)

1)当a=4时,则点C的坐标为( )

2)动点A在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.

3)当a=4时,在坐标平面内是否存在点P(不与点C重合),使PABABC全等?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】1)﹣46;(2c+d=2的值不变,值为2;(3)(﹣62)或(42)或(2,﹣2).

【解析】

1)先过点CCEy轴于E,证△AEC≌△BOA,推出CE=OA=4AE=BO=2,即可得出点C的坐标;

2)先过点CCEy轴于E,证△AEC≌△BOA,推出CE=OA=aAE=BO=2,可得OE=a+2,即可得出点C的坐标为(﹣aa+2),据此可得c+d的值不变;

3)分为三种情况讨论,分别画出符合条件的图形,构造直角三角形,证出三角形全等,根据全等三角形对应边相等即可得出答案.

1)如图1,过点CCEy轴于E,则∠CEA=AOB

∵△ABC是等腰直角三角形,∴AC=BA,∠BAC=90°,∴∠ACE+CAE=90°=BAO+CAE,∴∠ACE=BAO

在△ACE和△BAO中,∵,∴△ACE≌△BAOAAS),∴BO=AEAO=CE

B(﹣20),A04),∴BO=AE=2AO=CE=4,∴OE=4+2=6,∴C(﹣46).

故答案为:﹣46

2)动点A在运动的过程中,c+d=2的值不变,值为2.证明如下:

如图1,过点CCEy轴于E,则∠CEA=AOB

∵△ABC是等腰直角三角形,∴AC=BA,∠BAC=90°,∴∠ACE+CAE=90°=BAO+CAE,∴∠ACE=BAO

在△ACE和△BAO中,∵,∴△ACE≌△BAOAAS),∴BO=AEAO=CE

B(﹣20),A0a),∴BO=AE=2AO=CE=a,∴OE=2+a,∴C(﹣a2+a).

又∵点C的坐标为(cd),∴c+d=a+2+a=2,即c+d=2,值不变;

3)存在一点P,使△PAB与△ABC全等,分为三种情况:

①如图2,过PPEx轴于E,则∠PBA=AOB=PEB=90°,∴∠EPB+PBE=90°,∠PBE+ABO=90°,∴∠EPB=ABO

在△PEB和△BOA中,∵,∴△PEB≌△BOAAAS),∴PE=BO=2EB=AO=4,∴OE=2+4=6,即P的坐标是(﹣62);

②如图3,过CCMx轴于M,过PPEx轴于E,则∠CMB=PEB=90°.

∵△CAB≌△PAB,∴∠PBA=CBA=45°,BC=BP,∴∠CBP=90°,∴∠MCB+CBM=90°,∠CBM+PBE=90°,∴∠MCB=PBE

在△CMB和△BEP中,∵,∴△CMB≌△BEPAAS),∴PE=BMCM=BE

C(﹣46),B(﹣20),∴PE=2OE=BEBO=62=4,即P的坐标是(42);

③如图4,过PPEx轴于E,则∠BEP=AOB=90°.

∵△CAB≌△PBA,∴AB=BP,∠CAB=ABP=90°,∴∠ABO+PBE=90°,∠PBE+BPE=90°,∴∠ABO=BPE

在△BOA和△PEB中,∵,∴△BOA≌△PEBAAS),∴PE=BO=2BE=OA=4,∴OE=BEBO=42=2,即P的坐标是(2,﹣2).

综合上述:符合条件的P的坐标是(﹣62)或(42)或(2,﹣2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校计划选购甲、乙两种图书作为校园读书节的奖品.已知甲图书的单价是乙图书单价的倍;用元单独购买甲种图书比单独购买乙种图书要少本.

1)甲、乙两种图书的单价分别为多少元?

2)若学校计划购买这两种图书共本,且投入的经费不超过元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料:已知方程x2+x﹣3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.

解:设所求方程的根为y,则y=2x.所以x=

x=代入已知方程,得(2+﹣3=0,化简,得y2+2y﹣12=0.

故所求方程为y2+2y﹣12=0.

这种利用方程根的代换求新方程的方法,我们称为“换根法”.

问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副直角三角板如图摆放,等腰直角三角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BCBE在同一直线上,ACBD交于点O,连接CD

求证:CDO是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为(  )

A. (0, B. (0, C. (0, D. (0,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用(-1,0)表示A点的位置,用(2,1)表示B点的位置,那么:

(1)画出直角坐标系。

(2)写出△DEF的三个顶点的坐标。

(3)在图中表示出点M(6,2),N(4,4)的位置。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰RtABC中,∠BAC90°,ADBC于点D,∠ABC的平分线分别交ACADEF两点,MEF的中点,AM的延长线交BC于点N,连接DM,下列结论:①AEAF;②DFDN;③ANBF;④ENNC;⑤AENC,其中正确结论的个数是(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)

(参考数据:sin37°0.60,cos37°0.80,tan37°0.75,1.73.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

同步练习册答案