【题目】直线y= x+2与x轴,y轴分别相交于A、B两点,与反比例函数y= (x>0)的图象相交于点C(2,3).点P是反比例函数图象上一点,作PE垂直x轴于E,若以P、O、E为顶点的三角形与△AOB相似,则点P的坐标是________.
【答案】(2 , ),( ,2 )
【解析】
直线y=x+2与x轴,y轴分别相交于A、B两点,求得OA=4,OB=2,由点C(2,3)在函数y=(x>0)的图象上,求出反比例函数的解析式为:y=(x>0),设P(a,),求得PE=,OE=a,根据相似三角形的性质列比例式即可得到结论.
解:∵直线y=x+2与x轴,y轴分别相交于A、B两点,
∴A(-4,0),B(0,2),
∴OA=4,OB=2,
∵点C(2,3)在函数y=(x>0)的图象上,
∴k=6,
∴反比例函数的解析式为:y=(x>0),
∵点P是反比例函数图象上一点,
∴设P(a,),
∵PE垂直x轴于E,
∴PE=,OE=a,
∵以P、O、E为顶点的三角形与△AOB相似,
∴ 或 ,
∴ ,
解得:a=±2 ,a=±,
∵y=(x>0),
∴点P在第一象限,
∴P(2,),(,2).
故答案为:(2,),(,2).
科目:初中数学 来源: 题型:
【题目】分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系(只写结论,不需证明);
(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.
(1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;
(2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).
①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;
②当t=5时,CE=CF,请直接写出a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连结DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐角系中,点是原点,点、在坐标轴上,连接,,点在轴上,且点是线段的垂直平分线上一点.
(1)求点的坐标;
(2)点从点出发以每秒2个单位长度的速度向终点运动(点不与点重合),连接、,若点的运动时间为秒,的面积为,用含的式子表示;
(3)在(2)的条件下,过点作垂直轴,交于,若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).
(1)作出△ABC关于直线x=1对称的图形△A1B1C1并写出△A1B1C1各顶点的坐标;
(2)将△A1B1C1向左平移2个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,与的平分线相交于点P,,PB与CE交于点H,交BC于F,交AB于G,下列结论:①;②;③ BP垂直平分CE;④,其中正确的判断有( )
A. ①②B. ③④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com