精英家教网 > 初中数学 > 题目详情

【题目】计算:

(1)41(2)0+3÷

(2)(π-3)0()2+4×21

(3)()1+(π-2018)0(1)2019.

【答案】(1) -;(2)7;(3)4

【解析】

1)第一项按负整数指数幂的性质运算,第二项按零指数幂运算,第三项先按负整数指数幂的性质运算再计算除法,最后再算加减即可;

2)第一项按按零指数幂运算法则计算,,第二项按负整数指数幂的性质运算,第三项先按负整数指数幂的性质运算再计算乘法,最后再算加法即可;

3)第一项按负整数指数幂的性质运算,第二项按零指数幂运算,第三项按负整数指数幂的性质运算,最后再算加减即可.

(1)原式=-1+3÷9=-1=-.

(2)原式=14+4×7.

(3)原式=21(1)4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有以下三角形:三角形三边之比为2:3:2;②三角形的三边为3,4,5;③三角形三个角分别为20°,70°,90°;④三角形三个角的比为1:2:3.其中不是直角三角形的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P,Q分别是∠AOB的边OA,OB上的点.

(1)过点POB的垂线,垂足为H;

(2)过点QOA的垂线,交OA于点C,连接PQ;

(3)线段QC的长度是点Q 的距离, 的长度是点P到直线OB的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ、PH的大小关系是 (用“<”号连接).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,CA=CB,AD是腰BC边上的高,△ACD的内切圆⊙E分别与边AD、BC相切于点F、G,连AE、BE.
(1)求证:AF=BG;
(2)过E点作EH⊥AB于H,试探索线段EH与线段AB的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是(  )
A.4
B.8
C.12
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A表示-5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动.设运动时间为t.

(1)当t 秒时,PQ两点相遇,求出相遇点所对应的数;

(2)当t为何值时,PQ两点的距离为3个单位长度,并求出此时点P对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟   米,乙在A地时距地面的高度b   米.

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.

(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为 

查看答案和解析>>

同步练习册答案