精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰△ABC中,CA=CB,AD是腰BC边上的高,△ACD的内切圆⊙E分别与边AD、BC相切于点F、G,连AE、BE.
(1)求证:AF=BG;
(2)过E点作EH⊥AB于H,试探索线段EH与线段AB的数量关系,并说明理由.

【答案】解:(1)设△ACD的内切圆⊙E与边AC相切于点I,
△ACD的内切圆⊙E与边BC相切于点G,所以CI=CG.
同理:AI=AF.
∵CA=CB,CI=CG,∴AI=BG.
又∵AI=AF,∴AF=BG.
(2)EH=AB,
理由:连接AE、BE、CE,
∵E是△ACD的内切圆的圆心,
∴CE平分∠ACB.
即∠ACE=∠BCE,
在△ACE和△BCE中,

∴△ACE≌△BCE(SAS).
∴∠AEC=∠BEC,AE=BE,
∵E是△ACD的内切圆的圆心,∠ADC=90°,
∵∠AEC=90°+∠ADC=135°,
从而∠AEB=90°,又AE=BE,
∴△ABE为等腰直角三角形,
∵EH⊥AB于H,
∴EH=AB.

【解析】(1)设△ACD的内切圆⊙E与边AC相切于点I,由题意得CI=CG.同理:AI=AF.再由CA=CB,CI=CG,则AI=BG,从而得出AF=BG.
(2)连接AE、BE、CE,由E是△ACD的内切圆的圆心,则∠ACE=∠BCE,可证明△ACE≌△BCE,则∠AEC=∠BEC,AE=BE,根据∠ADC=90°,可证明△ABE为等腰直角三角形,根据EH⊥AB,得出EH=AB.
【考点精析】本题主要考查了三角形的内切圆与内心的相关知识点,需要掌握三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】钝角三角形ABC中,∠BAC>90°,AB=AC,ACB=α,过点A的直线lBC边于点D.点E在直线l上,且BC=BE.,点EAD延长线上.

①当α=30°,点D恰好为BC中点时,补全图1直接写出∠BAE= °,

BEA= °;

②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年初东北遭遇了几次大量降雪天气某市出动了多辆清雪车连夜清雪.大型清雪车比小型清雪车每小时多清扫路面6 km,大型清雪车清扫路面90 km与小型清雪车清扫路面60 km所用的时间相同求小型清雪车每小时清扫路面的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OAOD=120°,FOODOE平分∠BOD

(1)求∠EOF的度数;

(2)试说明OB平分∠EOF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A(3,0)、B(0,4).设△BOA的内切圆的直径为d,求d+AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一项工程,甲乙两人合作需要8天完成任务,若甲单独做需要12天完成任务.

(1)若甲乙两人一起做6天,剩下的由甲单独做,还需要几天完成?

(2)若甲乙两人一起做4天,剩下的由乙单独做,还需要几天完成?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)41(2)0+3÷

(2)(π-3)0()2+4×21

(3)()1+(π-2018)0(1)2019.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A的坐标是(0,2),点Cx轴上的一个动点.当点Cx轴上移动时,始终保持△ACP是等边三角形(点A、C、P按逆时针方向排列);当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).

初步探究

(1)写出点B的坐标   

(2)Cx轴上移动过程中,当等边三角形ACP的顶点P在第三象限时,连接BP,求证:△AOC≌△ABP.

深入探究

(3)当点Cx轴上移动时,点P也随之运动.探究点P在怎样的图形上运动,请直接写出结论;并求出这个图形所对应的函数表达式.

拓展应用

(4)Cx轴上移动过程中,当△POB为等腰三角形时,直接写出此时点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,AB=5,AC=3,D点从BC的中点到C点运动,点E在AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径R的取值范围为(  )

A.≤R≤
B.≤R≤
C.≤R≤2
D.1≤R≤

查看答案和解析>>

同步练习册答案