【题目】在边长为12的正方形中,对角线、交于点,点、分别为、边上的动点,且始终保持,连接交于点.
(1)求证:;
(2)若,求的值;
(3)在运动的过程中,是否存在最大值?若存在,请求出的最大值;若不存在,请说明理由.
【答案】(1)证明见解析;(2);(3)存在最大值为18.
【解析】
(1)由正方形的性质可得OA=OB,∠OAE=∠OBF,再结合OE⊥OF可证明,进而证明△AOE≌△BOF;
(2)根据(1)得AE=BF,由勾股定理求得EF的值,过点作,垂足为点,得,故,求出EH和FH的值,即可得出结论;
(3)证明,得,设,则,得,故可求解.
(1)∵四边形是正方形,
∴,,,,,
∴,,,
∴,
∵,
∴,
∴,
∴,
∴.
(2)由(1)知,,
∴,
∵,,
∴,
∴,
∴,,
∴,
过点作,垂足为点,
∴,
∴,,
∴,,
∴,
∴.
设,则,,
∴,
∴,,
∴,
∴.
(3)由(1)知,,
∴,∴,∴,
又∵,
∴,∴,∴,
∵,∴,
设,则,
则,
即当时,有最大值为18,
即存在最大值为18.
科目:初中数学 来源: 题型:
【题目】将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入,图2是它的平面示意图,请根据图中的信息解答下列问题:
(1)填空:AP= cm,PF= cm.
(2)求出容器中牛奶的高度CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于点A和点B(3,0),与轴交于点C(0,3),P是线段BC上一点,过点P作PN∥轴交轴于点N,交抛物线于点M.
(1)求该抛物线的表达式;
(2)如果点P的横坐标为2,点Q是第一象限抛物线上的一点,且△QMC和△PMC的面积相等,求点Q的坐标;
(3)如果,求tan∠CMN的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AC=4,AB=2,将矩形ABCD绕点A旋转得到矩形AB'C'D',使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C'上取点F,使B'F=AB.
(1)求证:AE=C'E;
(2)求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,△ABC为格点三角形(顶点在网格线的交点).
(1)将△ABC向上平移2个单位得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕着某点O逆时针方向旋转90°后,得到△A2B2C2,请画出旋转中心O,并直接写出在此旋转过程中,线段AB扫过的区域的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).
(1)请用列表的方法表示出上述游戏中两数和的所有可能的结果;
(2)分别求出李燕和刘凯获胜的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为( )
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°,为了方便行人安全过天桥,市政部门决定降低坡度.使新坡面的倾斜角为30°.若新坡脚前需留2.5米的人行道,问离原坡脚C点10米的建筑物是否需要拆除?请说明理由.(参考数据≈1.414,≈1.732)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com