【题目】如图,抛物线y=ax2﹣bx﹣4a交x轴于点A、B,交y轴于点C,其中点B、C的坐标分别为B(1,0)、C(0,4).
(1)求抛物线的解析式,并用配方法把其化为y=a(x﹣h)2+k的形式,写出顶点坐标;
(2)已知点D(m,1﹣m)在第二象限的抛物线上,求出m的值,并直接写出点D关于直线AC的对称点E的坐标.
【答案】(1)此抛物线的解析式为y=﹣x2﹣3x+4. ;(-, );(2)m1=﹣3,m2=1.E(0,1).
【解析】试题分析:(1)由抛物线y=ax2+bx﹣4a经过A(1,0)、C(0,4)两点,利用待定系数法即可求得抛物线的解析式;
(2)由点D(m,1﹣m)在抛物线y=﹣x2﹣3x+4上,即可求得点D的坐标,则可求得∠CBO的度数,然后过点D作DF⊥BC于F,延长DE交y轴于E,又由点E即为点D关于直线BC的对称点,即可求得点E的坐标.
试题解析:(1)抛物线y=ax2+bx﹣4a经过A(1,0)、C(0,4)两点,
∴,
解得.
∴此抛物线的解析式为y=﹣x2﹣3x+4.
(2)∵点D(m,1﹣m)在抛物线y=﹣x2﹣3x+4上,
∴﹣m2﹣3m+4=1﹣m,
解得m1=﹣3,m2=1.
∵点D在第二象限,
∴D(﹣3,4).
令y=﹣x2﹣3x+4=0,
解得x1=1,x2=﹣4.
∴B(﹣4,0).
∴∠CBO=45°.
连接DC,
易知DC∥BA,DC⊥CO,DC=3.
∴∠DCA=∠CAO=45°.
∴∠ACD=45°.
过点D作DF⊥BC于F,延长DE交y轴于E,
∴∠D=45°.
∴∠CFE=45°.
∴DF=CF=EF.
∴点E即为点D关于直线BC的对称点.
∴CD=CE=3,
∴OE=1
∴E(0,1).
科目:初中数学 来源: 题型:
【题目】等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为 ( )
A. 4cm, 10cm B. 7cm,7cm C. 4cm, 10cm或7cm, 7cm D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB =AC=2,∠B = 40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE = 40°,DE交线段AC于点E.
(1)当∠BDA = 115°时,∠BAD= °,∠DEC = °,当点D从点B向点C运动时,∠BDA逐渐变 (填“大”或“小”) .
(2)当DC等于多少时,△ABD≌△DCE?请说明理由.
(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,C是⊙O上的一点,连结AC并延长至D,使CD=AC,连结BD,作CE⊥BD,垂足为E。
(1)线段AB与DB的大小关系为 ,请证明你的结论;
(2)判断CE与⊥⊙O的位置关系,并证明;
(3)当△CED与四边形ACEB的面积比是1:7时,试判断△ABD的形状,并证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣x﹣6.
(1)画出函数的图象;
(2)观察图象,指出方程x2﹣x﹣6=0的解及不等式x2﹣x﹣6>0解集;
(3)求二次函数的图象与坐标轴的交点所构成的三角形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com