精英家教网 > 初中数学 > 题目详情

【题目】下框中是小明对一道题目的解答以及老师的批改.

题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?

解:设矩形蔬菜种植区域的宽为x_m,则长为2xm,

根据题意,得x·2x=288.

解这个方程,得x1=-12(不合题意,舍去),x2=12,

所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)

答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.

我的结果也正确!

小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.

结果为何正确呢?

(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?

(2)如图,矩形ABCD在矩形ABCD的内部,ABAB′,ADAD,且ADAB=2∶1,设ABAB′、BCBC′、CDCD′、DADA之间的距离分别为abcd,要使矩形ABCD′∽矩形ABCDabcd应满足什么条件?请说明理由.

【答案】(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由;(2)=2.

【解析】

(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以由已知条件求出矩形蔬菜种植区域的长与宽的关系即可;

(2)由使矩形ABCD′∽矩形ABCD,利用相似多边形的性质,可得,然后利用比例的性质.

解 (1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.

设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:

设温室的宽为xm,则长为2xm.

则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.

=2,

矩形蔬菜种植区域的长与宽之比为2∶1;

(2)要使矩形ABCD′∽矩形ABCD

就要

2AB-2(bd)=2AB-(ac),

ac=2(bd),

=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+4与反比例函数y的图象相交于A(-3,a)B两点.

(1)k的值;

(2)直线ym(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.MN=4,求m的值;

(3)直接写出不等式x的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两棵树的高度分别为AB=6 m,CD=8 m,两树的根部间的距离AC=4 m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6 m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)

(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)

(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.

(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AP的解析式ykx+4k分别交于x轴、y轴于AC两点,与反比例函数yx>0)交于点P.且PBx轴于B点,SPAB=9.

(1)求一次函数解析式;

(2)点Qx轴上的一动点,当QC+QP的值最小时,求Q点坐标;

(3)设点R与点P同在反比例函数的图象上,且点R在直线PB的右侧,作RTx轴于T点,交AC于点M,是否存在点R,使得BTMAOC全等?若存在,求点R的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点DE分别在BCAC上,且BDCEADBE相交于点F

(1)证明:△ABD≌△BCE

(2)证明:△ABE∽△FAE

(3)AF7DF1,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.

(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?

解:图形A的最小旋转角是   度,它   中心对称图形.

图形B的最小旋转角是   度,它   中心对称图形.

图形C的最小旋转角是   度,它   中心对称图形.

图形D的最小旋转角是   度,它   中心对称图形.

图形E的最小旋转角是   度,它   中心对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象过点C(0,1),顶点为Q(2,3),点Dx轴正半轴上,线段OD=OC.

(1)求抛物线的解析式;

(2)抛物线上是否存在点M,使得⊿CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计数问题是我们经常遇到的一类问题,学会解决计数问题的方法,可以使我们方便快捷,准确无误的得到所要求的结果,下面让我们借助两个问题,了解计数问题中的两个基本原理---加法原理、乘法原理.

问题1.从青岛到大连可以乘坐飞机、火车、汽车、轮船直接到达.如果某一天中从青岛直接到达大连的飞机有3班,火车有4班,汽车有8班,轮船有5班,那么这一天中乘坐某种交通工具从青岛直接到达大连共有 种不同的走法:

问题2.从甲地到乙地有3条路,从乙地到丙地有4条路,那么从甲地经过乙地到丙地,共有 种不同的走法:

方法探究

加法原理:一般的,完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法。那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.

实践应用1

问题3.如图1,图中线段代表横向、纵向的街道,小明爸爸打算从A点出发开车到B点办事(规定必须向北走,或向东走,不走回头路),问他共有多少种不同的走法?其中从A点出发到某些交叉点的走法数已在图2填出.

(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,如果将走法数填入图2的空圆中,便可以借助所填数字回答:从A点出发到B点的走法共有

(2)根据上面的原理和图3的提示,请算出从A点出发到达B点,并禁止通过交叉点C的走法有 .

(3)现由于交叉点C道路施工,禁止通行。小明爸爸如果任选一种走法,A点出发能顺利开车到达B(无返回)概率是

实践应用2

问题4.小明打算用 5种颜色给如下图的5个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色,问共有 种不同的染色方法.

查看答案和解析>>

同步练习册答案