【题目】如图,抛物线的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.
(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得⊿CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。
【答案】(1) (2)符合题意的M有三点,分别是(2 , 3 ),(, ),( , ) (3)存在,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为2.
【解析】(1)设抛物线的解析式为y=a(x-2)2+3. 将C(0,1)代入求得a的值即可;
(2)①C为直角顶点时,作CM⊥CD,CM交抛物线与点M,先求得直线CD的解析式,然后再求得直线CM的解析式,然后求得CM与抛物线的交点坐标即可;②D为直角顶点坐标时,作DM⊥CD,先求得直线CM的解析式,然后将直线CM与抛物线的交点坐标求出即可;
(3)存在. 作点C关于直线QE的对称点C/,作点C关于x轴的对称点C//,连接C/C//,交QE于点P,则△PCE即为符合题意的周长最小的三角形,由对称轴的性质可知,△PCE的周长等于线段C/C//的长度,然后过点C/作C/N⊥y轴,然后依据勾股定理求得C/C//的长即可.
解:(1)设抛物线的解析式为
将C(0,1)代入得:
解得:
∴
(2)①C为直角顶点时
如图①:CM⊥CD
设直线CD为,
∵OD=OC
∴OD=1
∴D(1,0)
把D(1,0)代入得:
∴
∵CM⊥CD,
∴易得直线CM为:
则:
解之得:M(2 , 3 ),恰好与Q点重合.分
②D为直角顶点时:
如图②,易得:直线DM为
则:
则M为(, )或 ( , )
综上所述,符合题意的M有三点,分别是(2 , 3 ),(, ),( , ).
(3) 在.
如图③所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周长大于△PCE的周长.)
如答图④所示,连接C′E,
∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
∴△QC′E为等腰直角三角形,
∴△CEC′为等腰直角三角形,
∴点C′的坐标为(4,5);
∵C,C″关于x轴对称,∴点C″的坐标为(0,﹣1).
过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″==2.
综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为2.
“点睛”本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,掌握相互垂直的两条直线的一次项系数乘积为-1是解答问题(2)的关键,利用轴对称的性质将三角形的周长转化为线段C/C//的长是解答问题(3)的关键.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF.
(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=300 , ∠ADE=150.
(1)求∠BDN的度数;
(2)求证:CD=CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,∠ACB=900 , 且A(0,4),点C(2,0),BE⊥x轴于点E,一次函数y=x+b经过点B,交y轴于点D。
(1)求证;△AOC≌△CEB
(2)求△ABD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是( )
A.PC=PD
B.∠CPO=∠DOP
C.∠CPO=∠DPO
D.OC=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法不正确的是( )
A.过任意一点可作已知直线的一条平行线
B.同一平面内两条不相交的直线是平行线
C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直
D.平行于同一直线的两直线平行
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com