分析 先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得∠DAE=∠BAC=60°,AD=AE,CE=BD=6,于是可判断△ADE为等边三角形,所以DE=AD=5,作CH⊥DE于H,如图,设DH=x,则HE=DE-DH=5-x
,利用勾股定理得到42-x2=62-(5-x)2,解得x=$\frac{1}{2}$,则可计算出CH=$\frac{3\sqrt{7}}{2}$,然后根据正弦的定义求解.
解答 解:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,
∴∠DAE=∠BAC=60°,AD=AE,CE=BD=6,![]()
∵△ADE为等边三角形,
∴DE=AD=5,
作CH⊥DE于H,如图,设DH=x,则HE=DE-DH=5-x
在Rt△CDH中,CH2=CD2-DH2=42-x2,
在Rt△CEH中,CH2=CE2-EH2=62-(5-x)2,
∴42-x2=62-(5-x)2,解得x=$\frac{1}{2}$,
在Rt△CDH中,CH=$\sqrt{{4}^{2}-(\frac{1}{2})^{2}}$=$\frac{3\sqrt{7}}{2}$,
∴sin∠CDH=$\frac{CH}{CD}$=$\frac{\frac{3\sqrt{7}}{2}}{4}$=$\frac{3\sqrt{7}}{8}$,
即sin∠CDH=$\frac{3\sqrt{7}}{8}$.
故答案为$\frac{3\sqrt{7}}{8}$.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是求C点到DE的距离.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com