精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,∠BAD=CDA=90°,AB=1CD=2,过ABD三点的O分别交BCCD于点EM,下列结论:

DM=CMAB=EM③⊙O的直径为2AE=AD

其中正确的结论有______(填序号).

【答案】①②④

【解析】

连接BDBMAMEMDE,根据圆周角定理的推论可判定四边形ADMB是矩形,进一步可判断①;在①的基础上可判定四边形AMCB是平行四边形,进而得BEAM,即可判断②;易证∠AEM=ADM=90DM=EM,再利用角的关系可得∠ADE=AED,继而可判断④;由题设条件求不出⊙O的直径,故可判断③.

解:连接BDBMAMEMDE

∵∠BAD=90°,∴BD为圆的直径,∴∠BMD=90°

∴∠BAD=CDA=BMD=90°

∴四边形ADMB是矩形,∴AB=DM=1

又∵CD=2,∴CM=1,∴DM=CM,故①正确;

ABMCAB=MC,∴四边形AMCB是平行四边形,

BEAM,∴,故②正确;

,∴AB=EM=1,∴DM=EM,∴∠DEM=EDM

∵∠ADM=90,∴AM是直径,∴∠AEM=ADM=90

∴∠ADE=AED,∴AD=AE,故④正确;

由题设条件求不出⊙O的直径,所以③错误;

故答案为:①②④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,抛物线C12与抛物线C22关于轴对称,C2轴交于AB两点,其中点A在点B的左侧交y轴于点D

1)求AB两点的坐标;

2)对于抛物线C22在第三象限部分的一点P,作PF轴于F,交AD于点E,若E关于PD的对称点E′恰好落在轴上,求P点坐标;

3)在抛物线C1上是否存在一点G,在抛物线C2上是否存在一点Q,使得以ABGQ四点为顶点的四边形是平行四边形?若存在,求出GQ两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6AD=9∠BAD的平分线交BC于点E,交DC的延长线于点FBG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

材料一:

早在2011925日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.20178月实现网络售票占比77%.2017102日,首次实现全部网上售票.与此同时,网络购票也采用了人性化的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.

材料二:

以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.

年度

2013

2014

2015

2016

2017

参观人数(人次)

7 450 000

7 630 000

7 290 000

7 550 000

8 060 000

年增长率(%)

38.7

2.4

-4.5

3.6

6.8

他还注意到了如下的一则新闻:201838日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.

根据以上信息解决下列问题:

(1)补全以下两个统计图;

(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知是边长为的等边三角形,动点同时从两点出发,分别沿方向匀速移动,它们的移动速度都是,当点到达点时,两点停止运动,设点的运动时间的秒,解答下列问题.

1时,求的面积;

2)若是直角三角形,求的值;

3)用表示的面积并判断能否成立,若能成立,求的值,若不能成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点Dx轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MAy轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.

(1)试找出图1中的一个损矩形;

(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;

(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;

(4)在图中,过点MMG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,是一种自卸货车.如图2是货箱的示意图,货箱是一个底边AB水平的矩形,AB=8米,BC=2米,前端档板高DE=0.5米,底边AB离地面的距离为1.3米.卸货时,货箱底边AB的仰角α=37°(如图3),求此时档板最高点E离地面的高度.(精确到0.1米,参考值:sin37°≈0.60cos37°≈0.80tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的顶点的坐标分别为,函数的图象经过点,则的值为(

A.2B.4C.8D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是抛物线对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为______________

查看答案和解析>>

同步练习册答案