分析 连接AE、AG,根据线段垂直平分线上的点到线段两端点的距离相等可得EB=EA,再根据等腰三角形两底角相等求出∠B,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AEG=60°,同理求出∠AGE=60°,从而判断出,△AEG为等边三角形,再根据等边三角形三边都相等列式求解即可.
解答 解:如图,连接AE、AG![]()
∵D为AB中点,ED⊥AB,
∴EB=EA,
∴△ABE为等腰三角形,
又∵∠B=∠EAB=30°,
∴∠BAE=30°,
∴∠AEG=60°,
同理可证:∠AGE=60°,
∴△AEG为等边三角形,
∴AE=EG=AG,
又∵AE=BE,AG=GC,
∴BE=EG=GC,
又BE+EG+GC=BC=18(cm),
∴EG=6(cm).
点评 本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线构造出等腰三角形与等边三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com