精英家教网 > 初中数学 > 题目详情

【题目】如图所示是一块含30°60°90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=x>0)的图象上,顶点B在函数y2= x>0)的图象上,∠ABO=30°,则=

A.-3 B.3 C. D.-

【答案】A

【解析】

根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点AB的坐标,表示出k1k2,进而得出k2k1的比值.

如图,设ABx轴于点C,又设AC=a.

ABx ∴∠ACO=90°

RtAOC中,OC=AC·tanOAB=a·tan60°=a

∴点A的坐标是(aa

同理可得 B的坐标是(a-3a

k1=a×a=a2 k2=-3a=-3a

.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB6AD8.动点EF同时分别从点AB出发,分别沿着射线AD和射线BD的方向均以每秒1个单位的速度运动,连接EF,以EF为直径作⊙O交射线BD于点M,设运动的时间为t

1)当点E在线段AD上时,用关于t的代数式表示DEDM

2)在整个运动过程中,

①连结CM,当t为何值时,△CDM为等腰三角形.

②圆心O处在矩形ABCD内(包括边界)时,求t的取值范围,并直接写出在此范围内圆心运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形和正方形, 连接,时, 的关系是?

如图2,将正方形绕点顺时针旋转,中结论是否仍然成立?若成立,请给出证明:若不成立,请说明理由;

已知,在旋转过程中,若直线平分,请画出相应的图形,并写出其中一种情形时长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD 中,对角线 AC BD 相交于点 O ,点 E F 分别为 OB OD 的中点,延长 AE G ,使 EG AE ,连接 CG

1)求证: ABE≌△CDF

2)当 AB AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,yx的几组对应值如下表所示:

x(s)

0

0.5

1

1.5

2

y(m)

0

8.75

15

18.75

20

()y关于x的函数解析式(不要求写x的取值范围)

()问:小球的飞行高度能否达到22m?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的汉字听写大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:

成绩x(分)分数段

频数(人)

频率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

频数分布直方图

根据所给的信息,回答下列问题:

1m=________n=________

2)补全频数分布直方图;

3)这200名学生成绩的中位数会落在________分数段;

4)若成绩在90分以上(包括90分)为等,请你估计该校参加本次比赛的2000名学生中成绩是等的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程(组)或不等式组:

1)解方程组

2)解分式方程+1

3)求不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y()与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:

(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?

(2)已知洗衣机的排水速度为每分钟19升.

①求排水时洗衣机中的水量y()与时间x(分钟)与之间的关系式;

②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数为常数,)的图象交于两点,点的坐标为(12).

1)求两个函数的表达式和点坐标;

2)过点轴的垂线交轴于点,求的面积;

3)根据图象直接写出当时,自变量的取值范围.

查看答案和解析>>

同步练习册答案