精英家教网 > 初中数学 > 题目详情

【题目】若关于x的一元二次方程(x2)(x3=m有实数根x1,x2,且x1≠x2,有下列结论:

①x1=2x2=3

二次函数y=xx1)(xx2)+m的图象与x轴交点的坐标为(20)和(30).

其中,正确结论的个数是( )

A. 0 B. 1 C. 2 D. 3

【答案】C

【解析】

①∵一元二次方程实数根分别为x1x2

∴x1=2x2=3,只有在m=0时才能成立,故结论错误。

一元二次方程(x2)(x3=m化为一般形式得:x25x6m=0

方程有两个不相等的实数根x1x2∴△=b24ac=(-5246m=4m10

解得:。故结论正确。

③∵一元二次方程x25x6m=0实数根分别为x1x2∴x1x2=5x1x2=6m

二次函数y=xx1)(xx2+m=x2-(x1x2xx1x2m=x25x+(6m)+m

=x25x6=x2)(x3)。

y=0,即(x2)(x3=0,解得:x=23

抛物线与x轴的交点为(20)或(30),故结论正确。

综上所述,正确的结论有2个:②③。故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数 ,是常数)的图像经过A(26)B(mn),其中m>2.过点A轴垂线,垂足为C,过点作轴垂线,垂足为ACBD交于点E,连结ADCB

1)若的面积为3,求m的值和直线的解析式;

2)求证:

3)若AD//BC ,求点B的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,4AB=5ACAD△ABC的角平分线,点EBC的延长线上,EF⊥AD于点F,点GAF上,FG=FD,连接EGAC于点H.若点HAC的中点,则的值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为弓形AB的弦,AB2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yx2+bx+c经过点ABC,已知A(﹣10),C0,﹣3).

1)求抛物线的解析式;

2)如图1,抛物线顶点为EEFx轴于F点,Mm0)是x轴上一动点,N是线段EF上一点,若∠MNC90°,请指出实数m的变化范围,并说明理由.

3)如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2k0)与抛物线相交于点PQ(点P在左边),过点Px轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,DC6cm,在DC上存在一点E,沿直线AEADE折叠,使点D恰好落在BC边上的点F处,若ABF的面积为24cm2,那么折叠的ADE的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC,以AB为直径的圆与BC边交于点D,过点DDFAC,垂足为F,过点FFGAB,垂足为G,连结GD

1)求证:DF是⊙O的切线;

2)若AB12,求FG的长;

3)在(2)问条件下,求点DFG的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.

(精确到1mm,参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )

A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)

C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)

查看答案和解析>>

同步练习册答案