精英家教网 > 初中数学 > 题目详情

【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )

A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)

C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)

【答案】C

【解析】设目前车票价格为k支出费用为by=kxbk0),若按建议()减少支出费用设减少后的支出费用为b1b1b),y=kxb1∴图①反映了建议();

若提高车票价格设提高后的车票价格为k1k1k),y=k1xb∴图③反映了建议().

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2019次后,该点所对应的数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).

(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1

(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2

(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是( )

A. 直线AB与直线BA是同一条直线

B. 射线OA与射线AB是同一条射线

C. 射线OA与射线OB是同一条射线

D. 线段AB与线段BA是同一条线段

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和点G,H.

(1)求证:△PHC≌△CFP;

(2)证明四边形 PEDH和四边形 PGBF都是矩形,并直接写出它们面积之间的关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD为菱形,点E在边AD上,点F在边CD

(1) AE=CF,求证:EB=BF

(2) AD=4DE=CF,且EFB为等边三角形,求四边形DEBF的面积

(3) 若∠DAB=60°,点H在边BC上,且BH=HC=2.若∠DFA=2HAB,直接写出CF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数>0)的对称轴与x轴交于点B与直线l交于点C,点A是该二次函数图像与直线l在第二象限的交点,点D是抛物线的顶点,已知ACCO=1∶2,∠DOB=45°,△ACD的面积为2.

(1) 求抛物线的函数关系式;

(2) 若点P为抛物线对称轴上的一个点,且POC=45°,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块矩形纸片ABCDAB=8AD=6.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将AED沿DE向右翻折,AEBC的交点为F,则CF的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知图甲是一个长为,宽为的长方形,沿图甲中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.

1)求图乙中阴影部分正方形的边长(用含字母的整式表示);

2)请用两种不同的方法求图乙中阴影部分的面积.

3)观察图乙,并结合(2)中的结论,写出下列三个整式:之间的等量关系;

4)根据(3)题中的等量关系,解决如下问题:若,求的值.

查看答案和解析>>

同步练习册答案