【题目】解方程:
(1)4x2=(x﹣1)2
(2)x(x﹣3)=2x
(3)(x+3)2=2x+7
(4)﹣2=
【答案】(1)x=﹣1或;(2)x=0或5;(3)x=﹣2±;(4)x=.
【解析】
(1)利用直接开方法解方程即可;
(2)利用因式分解法解方程即可;
(3)利用配方法解方程即可;
(4)去分母化为整式方程,注意必须检验.
解:(1)4x2=(x﹣1)2
2x=±(x﹣1),
∴x=﹣1或
(2)x(x﹣3)=2x
x(x﹣3﹣2)=0,
x(x﹣5)=0,
∴x=0或5
(3)(x+3)2=2x+7
x2+6x+9=2x+7,
x2+4x=﹣2,
∴(x+2)2=2,
∴x=﹣2±
(4)﹣2=
两边乘(1﹣x)(1+x)得到:
1+x﹣2(1﹣x2)=3x﹣x2,
1+x﹣2+2x2=3x﹣x2,
3x2﹣2x﹣1=0,
(x﹣1)(3x+1)=0,
∴x=1或x=﹣,
经检验:x=1是分式方程的增根,方程的解为x=.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=15,AD=20,P是AD边上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F,则PEPF的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自我省深化课程改革以来,盘锦市某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.
根据图中信息解决下列问题:
(1)本次共调查______名学生,扇形统计图中B所对应的扇形的圆心角为______度;
(2)补全条形统计图;
(3)该校参加实践活动课的学生共1200人,求该校参加D类实践活动课的学生大约多少人?
(4)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.
(1)如图1,当点E在线段AC上时,求证:△DEC∽△DFB.
(2)当点E在线段AC的延长线上时,(1)中的结论是否仍然成立?若成立,请结合图2给出证明;若不成立,请说明理由;
(3)若AC=,BC=2,DF=4,请直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知圆锥的底面半径是2,母线长是6.
(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;
(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、C、D都在上,过点C作交OB延长线于点A,连接CD,且,.
(1)直线AC与有怎样的位置关系?为什么?
(2)求由弦CD、BD与弧BC所围成的阴影部分的面积(结果保留)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形的边长为2,=60°,对角线,相交于点O.以点O为坐标原点,分别以,所在直线为x轴、y轴,建立如图所示的直角坐标系.以为对角线作菱形∽菱形,再以为对角线作菱形∽菱形,再以为对角线作菱形∽菱形,,按此规律继续作下去,在x轴的正半轴上得到点,,,......,,则点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC,∠ABC=90°,顶点A在第一象限,顶点B、C在x轴的正半轴上(C在B的右侧),,△ADC与△ABC关于AC所在的直线对称.
(1)当OB=2时,求点D的坐标.
(2)若点和点在同一个反比例函数图象上,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com