精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB15AD20PAD边上不与AD重合的一个动点,过点P分别作ACBD的垂线,垂足为EF,则PEPF的最大值为_____

【答案】36

【解析】

APx,则PD20x,通过证APE∽△ACDDPF∽△DBA,分别用含x的代数式将PEPF表示出来,并算出其乘积,然后用二次函数的性质求出其最大值即可.

RtABD中,BD25

PEACPFBD,四边形ABCD是矩形,

∴∠PEA=∠CDA=∠PFD=∠BAD=90°AC=BD=25CD=AB=15

∵∠PAE=∠CAD,∠PEA=∠CDA=90°

∴△APE∽△ACD

∵∠PDF=∠BDA,∠PFD=BAD=90°

DPF∽△DBA

APx,则PD20x

PExPF20x)=12x

PEPF12x

=﹣x2+x

=﹣x102+36.

∴当x10时,PEPF有最大值,最大值为36

故答案为:36

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC,以AC为边在△ABC外作等腰△ACD,其中ACAD

1)如图1,若AB为边在△ABC外作△ABEABAE,∠DAC=∠EAB60°,求∠BFC的度数;

2)如图2,∠ABCα,∠ACDβBC4BD6

α30°,β60°,AB的长为   

若改变αβ的大小,且α+β90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)某数学兴趣小组想测量商丘电视台电视塔的高度,如图,该小组在商丘电视塔BC前一座楼房楼顶A处所观测到电视塔最高点B的仰角为65°,电视塔最低点C的仰角为30°,楼顶A与电视塔的水平距离AD90米,求商丘电视塔BC的高度.(结果精确到1米,参考数据≈1.41,≈1.73,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD3

(1)设点A的坐标为(44)则点C的坐标为   

(2)若点D的坐标为(4n)

求反比例函数y的表达式;

求经过CD两点的直线所对应的函数解析式;

(3)(2)的条件下,设点E是线段CD上的动点(不与点CD重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点CD(如图).

1)求证:AC=BD

2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AB8ACBD相交于点O

1)如图,作射线OM与边BC相交于点E,将射线OM绕点O顺时针旋转90°,得到射线ON,射线ON与边AB相交于点F,连接EFBO于点G

①直接写出四边形OEBF的面积是_______.

②求证:OEF是等腰直角三角形.

③若OG,求OE的长.

2)点P在射线CA上一点,若BP2,射线PM与直线BC相交于点E,当CE2时,将射线PM绕点P顺时针旋转45°,得到射线PN,射线PN与直线BC相交于点F,请直接写出BF的长________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径CDAB是⊙O的弦,ABCD,垂足为N.连接AC

(1)ON1BN=.求弧BC长度;

(2)若点EAB上,且AC2AE.AB.求证:∠CEB2CAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数a≠0)的图象如图所示,则下列命题中正确的是(  )

A. a bc

B. 一次函数y=ax +c的图象不经第四象限

C. mam+b+bam是任意实数)

D. 3b+2c0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

14x2=(x12

2xx3)=2x

3)(x+322x+7

42

查看答案和解析>>

同步练习册答案