精英家教网 > 初中数学 > 题目详情

【题目】某商品现在售价为每件60元,每星期可卖出300件,市场调查反映:调整价格,每件涨价1元,每星期要少卖出10件;每件降价1元,每星期可多卖出20.已知商品的进价为每件40.

1)设每件降价x元,每星期的销售利润为y元;

请写出yx之间的函数关系式;

确定x的值,使利润最大,并求出最大利润;

2)若涨价x元,则x= 元时,利润y的最大值为 元(直接写出答案,不必写过程).

【答案】1x=23y最大为6120;(25 6250

【解析】试题分析:(1)①设每件降价x元,每星期的销售利润为y元,根据等量关系“总利润=每件的利润×每星期的销售量”,写出函数关系式即可;②把函数的解析式化为顶点式,然后根据x取整数,即可求得最大利润;(2)表示出商品的周销售量,根据等量关系“总利润=每件的利润×每星期的销售量”,写出函数关系式,再根据二次函数的性质求出最大利润即可.

试题解析:

1)依题意得

,x为自然数

x=23y最大为6120

2x=5时,y最大为6250.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,将ABC绕顶点C逆时针旋转得到A'B'CMBC的中点,PA'B'的中点,连接PM.若BC2,∠BAC30°,则线段PM的最大值是(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O在线段AB上,AB=6,OC为射线,且BOC=45°.动P以每秒1个单位长度的速度从点O出发,沿射线OC做匀速运动.设运动时间为t 秒.

(1)如图1,若AO=2.

t=6秒时,则OP= ,SABP=

ABP与PBO相似时,求t的值;

(2)如图2,若点O为线段AB的中点,当AP=AB时,过点A作AQBP,并使得QOP=B,求AQBP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线轴于点,交轴于点, 的中点, 为射线上一点,连,将点顺时针旋转得线段,则的最小值为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,ADC=60°,AB=BC=1,则下列结论:

①∠CAD=30°BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABCD 中,AEBF 分别平分∠DAB 和∠ABC,交 CD 于点 EFAEBF 相交于点 M

(1)求证:AEBF

(2)判断线段 DF CE 的大小关系,并予以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】码头工人往一艘轮船上装载货物,装完货物所需时间 y(分钟)与装载速度 x(/分钟)之间的函数关系如图.

1)求yx之间的函数表达式:

2)若要求在2小时至2.5小时内(包括2小时与2.5小时)装完这批货物,求装货速度的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不览夜景,味道重庆.乘游船也有两江,犹如在星河中畅游,是一个近距离认识重庆的最佳窗口.两江号游轮经过核算,每位游客的接待成本为30元.根据市场调查,同一时段里,票价为40元时,每晚将售出船票600张,而票价每涨1元,就会少售出10张船票.

1)若该游轮每晚获得10000元利润的同时,适当控制游客人数,保持应有的服务水准,则票价应定为多少元?

2)春节期间,工商管理部门规定游轮船票单价不能低于44元,同时该游轮为提高市场占有率,决定每晚售出船票数量不少于540张,则票价应定为多少元,才能使每晚获得的利润最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB,以O为圆心,以任意长为半径作弧,分别交OAOBFE两点,再分别以EF为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线OP,过点FFDOBOP于点D.

(1)若∠OFD=116°,求∠DOB的度数;

(2)FMOD,垂足为M,求证:△FMO≌△FMD.

查看答案和解析>>

同步练习册答案