如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数的图
象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:
(1)该反比例函数的解析式是什么?
(2)当四边形AEGF为正方形时,点F的坐标时多少?
(3)阅读合作学习内容,请解答其中的问题;
小亮进一步研究四边形A
EGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”
针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.
![]()
![]()
![]()
解答:
解:(1)∵四边形ABOD为矩形,EH⊥x轴,
而OD=3,DE=2,
∴E点坐标为(2,3),
∴k=2×3=6,
∴反比例函数解析式为y=6/x(x>0);--------------2分
(2)设正方形AEGF的边长为a,则AE=AF=6,
∴B点坐标为(2+a,0)),A点坐标为(2+a,3),
∴F点坐标为(2+a,3﹣a),--------------4分
把F(2+a,3﹣a)代入y=得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),
∴F点坐标为(3,2);--------------6分
(3)当AE>EG时,矩形AEGF与矩形DOHE不能全等.--------------7分
当AE>
EG时,矩形AEGF与矩形DOHE能相似.--------------8分
∵矩形AEGF与矩形DOHE能相似,
∴AE:OD=AF:DE,
∴
=
=3\2,
设AE=3t,则AF=2t,
∴A点坐标为(2+3t,3),
∴F点坐标为(2+3t,3﹣2t),--------------10分
把F(2+3t,3﹣2t)代入y=得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=5\6,
∴AE=3t=5\2,
∴相似比=
=5\6--------------12分
![]()
科目:初中数学 来源: 题型:
我区实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
![]()
(1)本次调查中,张老师一共调査了 名同学,其中C类女生有 名,D类男生有 名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=AC,D、E是△ABC 内两点,AD平分∠BAC,∠EBC=
∠E=60°,若BE=6 cm,DE=2 cm,则BC= cm;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com