精英家教网 > 初中数学 > 题目详情

【题目】在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差,数据:11,15,18,17,10,19的方差

(1)分别求甲、乙两段台阶的高度平均数;

(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?

(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.

【答案】(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)游客行走更舒服.

【解析】(1)根据图中所给的数据,利用平均数公式求解即可

(2)根据平均数、中位数、方差和极差的特征回答即可

(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.

(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,

乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.

(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.

(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

(1)如图1,当tan∠PAB=1,c=4 时,a= , b=
如图2,当∠PAB=30°,c=2时,a= , b=
(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中线段AB表示某工程的部分隧道,无人勘测飞机从隧道的一侧点A出发,沿着坡度为1:1.5的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为23°,继续飞行至点E,测得点B的俯角为45°,此时点E离地面的高度EF=800米.

(1)分别求隧道AC和BC段的长度;
(2)建工集团安排甲、乙两个金牌施工队分别从隧道两头向中间施工,甲队负责AC段施工,乙队负责BC段施工,乙每天的工作量是甲的2倍,两队同时开工5天后,甲队将速度提高25%,乙队将速度提高了150%,从而两队同时完成,求原计划甲、乙两队每天各施工多少米.(参考数据:tan23°≈0.4,cos23°≈0.9)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.
(1)在图甲中画出一个ABCD.
(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在《九章算术》中有求三角形面积公式底乘高的一半,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(年)提出了三斜求积术,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前公元前年)得出的,故我国称这个公式为海伦一秦九韶公式.它的表达为:三角形三边长分别为,则三角形的面积(公式里的为半周长即周长的一半).

请利用海伦一秦九韶公式解决以下问题:

)三边长分别为的三角形面积为__________.

)四边形中,,四边形的面积为__________.

)五边形中,,五边形的面积为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当x>0时,反比例函数 (  )
A.图象在第四象限,yx的增大而增大
B.图象在第三象限,yx的增大而增大
C.图象在第二象限,yx的增大而减小
D.图象在第一象限,yx的增大而减小

查看答案和解析>>

同步练习册答案