【题目】2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议。我国准备将地的茶叶1000吨和地的茶叶500吨销往“一带一路”沿线的地和地,地和地对茶叶需求分别为900吨和600吨,已知从、两地运茶叶到、两地的运费(元/吨)如下表所示,设地运到地的茶叶为吨,
35 | 40 | |
30 | 45 |
(1)用含的代数式填空:地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________.
(2)用含(吨)的代数式表示总运费(元),并直接写出自变量的取值范围;
(3)求最低总运费,并说明总运费最低时的运送方案.
【答案】(1),,;(2);(3)由地运往地400吨,运往地600吨;由地运往地500吨时运费最低
【解析】
(1)从A地运往C地x吨,A地有1000吨,所以只能运往D地(1000-x)吨;C地需要900吨,那么B地运往C地(900-x),D地需要600吨,那么运往D(x-400)吨;
(2)根据总运费=A地运往C地运费+A地运往D地运费+B地运往C地运费+B地运往D地运费代入数值或字母可得;
(3)根据(2)中得到的一次函数关系式,结合函数的性质和取值范围确定总运费最低方案。
(1),,
(2)
( )
(3)∵,
∴随的增大而增大。
∵
∴当时,最小.
∴由地运往地400吨,运往地600吨;
由地运往地500吨时运费最低。
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为( )
A. 8S B. 9S C. 10S D. 11S
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.
根据上述材料,直接下列问题答案:
(1)|5﹣(﹣2)|的值为_____;
(2)若|x﹣3|=1,则x的值为_____;
(3)若|x﹣3|=|x+1|,则x的值为_____;
(4)若|x﹣3|+|x+1|=7,则x的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现在把一张正方形纸片按如图方式剪去一个半径为40厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米.(不计损耗、重叠,结果精确到1厘米,≈1.41,≈1.73)
A. 64 B. 67 C. 70 D. 73
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com