精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=﹣ x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C,D同时出发,当动点D到达原点O时,点C,D停止运动.

(1)直接写出抛物线的解析式:
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

【答案】
(1)y=﹣ x2+3x+8
(2)

解:∵点A(0,8)、B(8,0),

∴OA=8,OB=8,

令y=0,得:﹣ x2+3x+8=0,

解得:x1=8,x2=﹣2,

∵点E在x轴的负半轴上,

∴点E(﹣2,0),

∴OE=2,

根据题意得:当D点运动t秒时,BD=t,OC=t,

∴OD=8﹣t,

∴DE=OE+OD=10﹣t,

∴S= DEOC= (10﹣t)t=﹣ t2+5t,

即S=﹣ t2+5t=﹣ (t﹣5)2+

∴当t=5时,S最大=


(3)

解:方法一:

由(2)知:当t=5时,S最大=

∴当t=5时,OC=5,OD=3,

∴C(0,5),D(3,0),

由勾股定理得:CD=

设直线CD的解析式为:y=kx+b,

将C(0,5),D(3,0),代入上式得:

k=﹣ ,b=5,

∴直线CD的解析式为:y=﹣ x+5,

过E点作EF∥CD,交抛物线与点P,如图1,

设直线EF的解析式为:y=﹣ x+b,

将E(﹣2,0)代入得:b=﹣

∴直线EF的解析式为:y=﹣ x﹣

将y=﹣ x﹣ ,与y=﹣ x2+3x+8联立成方程组得:

解得:

∴P( ,﹣ );

过点E作EG⊥CD,垂足为G,

∵当t=5时,SECD= =

∴EG=

过点D作DN⊥CD,垂足为N,且使DN= ,过点N作NM⊥x轴,垂足为M,如图2,

可得△EGD∽△DMN,

即:

解得:DM=

∴OM=

由勾股定理得:MN= =

∴N( ),

过点N作NH∥CD,与抛物线交与点P,如图2,

设直线NH的解析式为:y=﹣ x+b,

将N( ),代入上式得:b=

∴直线NH的解析式为:y=﹣ x+

将y=﹣ x+ ,与y=﹣ x2+3x+8联立成方程组得:

解得:

∴P(8,0)或P( ),

综上所述:当△CED的面积最大时,在抛物线上存在点P(点E除外),使△PCD的面积等于△CED的最大面积,点P的坐标为:P( ,﹣ )或P(8,0)或P( ).

方法二:

由(2)知,C(0,5),D(3,0),∴lCD:y=﹣ x+5,

作PH⊥x轴,交CD于点H,

∵P在抛物线上,∴设P(6m,﹣18m2+18m+8),

∴H(6m,﹣10m+5),C(0,5),D(3,0),

SPCD= |(DX﹣CX)(PY﹣HY)|,

∵SCED=

∴3×|18m2﹣28m﹣3|=25,

①3×(18m2﹣28m﹣3)=25,

∴m1=﹣ ,m2=

∴6m1=﹣2(舍),6m2=

②3×(18m2﹣28m﹣3)=﹣25,

∴m1= ,m2=

∴6m1=8,6m2=

综上所述,点P的坐标为:P( ,﹣ )或P(8,0)或P(


【解析】解:(1)将点A(0,8)、B(8,0)代入抛物线y=﹣ x2+bx+c得:
解得:b=3,c=8,
∴抛物线的解析式为:y=﹣ x2+3x+8,
所以答案是:y=﹣ x2+3x+8;
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.

(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABCPBD上一点,过点PPM^ADPN^CD,垂足分别为MN

1)求证:ADB=CDB

2)若ADC=90°,求证:四边形MPND是正方形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD,BE分别是BC,AC边上的高.求证:△DCE∽△ACB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).若点C落在AB边下方的点E处,则△ADE的周长p的取值范围是(

A. 7<p<10 B. 5<p<10 C. 5<p<7 D. 7<p<19

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列汽车标志中,是中心对称图形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.

(1)如图,若α=21°,ABC=32°,且APBC于点P,试探究线段AB、ACPB之间的数量关系,并对你的结论加以证明;

(2)如图,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,直接写出∠APC的度数________(用含α的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示在四边形ABCDA为直角,AB=16,BC=25,CD=15,AD=12,

(1)试说明BDCD

(2)求四边形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是(
A.( ,3)、(﹣ ,4)
B.( ,3)、(﹣ ,4)??
C.( )、(﹣ ,4)
D.( )、(﹣ ,4)

查看答案和解析>>

同步练习册答案