【题目】如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为 .
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△ABC和Rt△ADE中,AB=AC, AD=AE,CE与BD相交于点M,BD与AC交于点N,试猜想BD与CE有何关系?说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列关于自然数的等式:
2×0+1=12①,
4×2+1=32②,
8×6+1=72③,
16×14+1=152④,
根据上述规律解决下列问题:
(1)完成第五个等式:32× +1= ;
(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(每小题5分,共10分)
(1)先化简,再求值5x2﹣[2xy﹣3(xy+2)+4x2],其中x=﹣2,y= .
(2)若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c(a3﹣b)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识迁移:我们知道,一次函数y=a(x﹣m)+n(a≠0,m>0,n>0)的图象是由一次函数y=ax的图象向右平移m个单位,再向上平移n个单位得到;类似地,函数y= +n(k≠0,m>0,n>0)的图象是由反比例函数的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).
理解应用:(1)函数y=+1的图象可由函数y=的图象向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 .
灵活应用:(2)如图,在平面直角坐标系xOy中,请根据所给的y=的图象画出函数y=﹣2的图象,并根据该图象指出,当x在 时,y≥﹣1?
实际应用:
某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为y1=;若在x=t(t≥4)时进行第一次复习,发现他复习后的记忆存留量是复习前的2倍(复习的时间忽略不计),且复习后的记忆存留量随x变化的函数关系为y2=,如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016湖北襄阳第25题)
如图,已知点A的坐标为(-2,0),直线y=-+3与x轴,y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点.
(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N点.Q从点B出发,以每秒l个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当t(秒)为何值时,存在QMN为等腰直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:
选项 | 方式 | 百分比 |
A | 唱歌 | 35% |
B | 舞蹈 | a |
C | 朗诵 | 25% |
D | 器乐 | 30% |
请结合统计图表,回答下列问题:
(1)本次调查的学生共 人,a= ,并将条形统计图补充完整;
(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?
(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com