【题目】学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.
(1)求购买1台平板电脑和1台学习机各需多少元?
(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?
【答案】(1)购买1台平板电脑需3000元,购买1台学习机需800元;(2)方案1:购买平板电脑38台,学习机62台;方案2:购买平板电脑39台,学习机61台;方案3:购买平板电脑40台,学习机60台;方案1最省钱.
【解析】
试题分析:(1)设购买1台平板电脑需x元,购买1台学习机需y元,由题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;
(2)设购买平板电脑x台,学习机(100﹣x)台,根据“购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍”列出不等式组,求出解集,即可得出购买方案,进而得出最省钱的方案.
试题解析:(1)设购买1台平板电脑需x元,购买1台学习机需y元,根据题意得:,解得:.
答:购买1台平板电脑需3000元,购买1台学习机需800元;
(2)设购买平板电脑x台,学习机(100﹣x)台,
根据题意得:,解得:37.03≤x≤40,正整数x的值为38,39,40,当x=38时,y=62;x=39时,y=61;x=40时,y=60,
方案1:购买平板电脑38台,学习机62台,费用为114000+49600=163600(元);
方案2:购买平板电脑39台,学习机61台,费用为117000+48800=165800(元);
方案3:购买平板电脑40台,学习机60台,费用为120000+48000=168000(元),
则方案1最省钱.
科目:初中数学 来源: 题型:
【题目】为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明有5张写着不同数字的卡片,请按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?答:我抽取的2张卡片是、 , 乘积的最大值为 .
(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?答:我抽取的2张卡片是、 , 商的最小值为 .
(3)从中取出4张卡片,用学过的运算方法,使结果为24。如何抽取?写出运算式子。(写出一种即可)。答:我抽取的4张卡片是、、、 ,
算24的式子为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一动点从半径为 2 的⊙O上的 A0点出发,沿着射线 A0O 方向运动到⊙O上的点 A1处,再向左沿着与射线 A1O 夹角为60°的方向运动到⊙O上的点 A2处;接着又从 A2点出发,沿着射线 A2O 方向运动到⊙O上的点 A3处,再向左沿着与射线 A3O 夹角为60°的方向运动到⊙O上的点 A4处;…按此规律运动到点 A2017处,则点 A2017与点 A0间的距离是( )
A.4
B.2
C.
D.0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
第1个等式:a1= = × ;
第2个等式:a2= = ×( );
第3个等式:a3= = ×( );
第4个等式:a4= = ×( );
…
请解答下列问题:
(1)按以上规律列出第5个等式:a5=;
(2)用含有n的代数式表示第n个等式:an==(n为正整数);
(3)求a1+a2+a3+a4+…+a100的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com