【题目】为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
【答案】(1)大货车用8辆,小货车用7辆;(2)y=100x+9400.(0≤x≤10,且x为整数);(3)使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
【解析】
试题分析:(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,则前往B村的小货车为[7﹣(10﹣x)]辆,根据题意,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
试题解析:(1)设大货车用x辆,小货车用y辆,根据题意得:,解得:.∴大货车用8辆,小货车用7辆;
(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(0≤x≤10,且x为整数);
(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵0≤x≤10,∴5≤x≤10且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900.
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
科目:初中数学 来源: 题型:
【题目】下列添括号中,错误的是( )
A. -x+5=-(x+5) B. -7m-2n=-(7m+2n)
C. a2-3=+(a2-3) D. 2x-y=-(y-2x)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为 正,向南为负,当天记录如下:(单位:千米)-18.3,-9.5,+7.1,-14,-6.2,+13,-6.8, -8.5
(1)问B地在A地何处,相距多少千米?
(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王师傅手中拿着一根长12cm的木条,则该木条不能与下列所给木条组成直角三角形的是( )
A. 5cm和13cm B. 9cm和15cm C. 16cm和20cm D. 9cm和13cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用反证法证明“三角形的三个内角中,至少有一个大于或等于60°时,应先假设_____________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%
(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?
(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?
(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.
(1)求购买1台平板电脑和1台学习机各需多少元?
(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com