精英家教网 > 初中数学 > 题目详情

【题目】为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植AB两种蔬菜,若种植20A种蔬菜和30B种蔬菜,共需投入36万元;若种植30A种蔬菜和20B种蔬菜,共需投入34万元.

1)种植AB两种蔬菜,每亩各需投入多少万元?

2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;

3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.

【答案】1)种植AB两种蔬菜,每亩各需分别投入0.60.8万元;(2w=﹣0.1m+150 ;(3)种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.

【解析】

1)根据题意列二元一次方程组问题可解;

2)用m表示种植两种蔬菜的利润即可得到wm之间函数关系式;

3)根据A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍得到m的取值范围,讨论w最大值.

1)设种植AB两种蔬菜,每亩各需分别投入xy万元.根据题意得:

解得:

答:种植AB两种蔬菜,每亩各需分别投入0.60.8万元.

2)由题意得:w=0.8m+1.20.1m+1500m);

3)由(2):m2

解得:m100

w=0.1m+150k=0.10

wm的增大而减小,

∴当m=100时,w最大=14050

∴当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为加快智慧校园建设,某县准备为试点学校采购一批 两种型号的一体机.经过市场调查发现,今年每套 型一体机的价格比每套 型一体机的价格多 万元,且用万元恰好能购买 型一体机和 型一体机.

1)求今年每套 型、 型一体机的价格各是多少万元?

2)该县明年计划采购 型、 型一体机共 套,需投入资金 万元. 考虑物价因素,预计明年每套 型一体机的价格不变,每套 型一体机的价格比今年上涨 设该市明年购买 型一体机 .

请写出该县明年需投入资金 (万元)与购买 型一体机 (套)之间的函数关系式

若该县明年购买 型一体机的总费用不低于购买 型一体机的总费用,那么该县明年至少需要投入多少万元才能完成采购计划?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(1),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )

A.(0,﹣2)B.(1,﹣)C.(20)D.(,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的顶点在第一象限,点的坐标分别为,直线轴于点,若关于点成中心对称,则点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC∠A=30°,直线a∥b,顶点C在直线b上,直线aAB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一张扇形纸片OAB,∠AOB120°OA6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为(

A.9B.12π9C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数yax2bx4的图象与x轴交于点B(20)、点C(80)两点,与y轴交于点A

(1)求二次函数的表达式;

(2)连接ACAB,若点N在线段BC上运动(不与点BC重合),过点NNMAC,交AB于点M,当△AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,线段AC上有一动点P,连接PM,求PMPC的值最小时,点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图像与坐标轴交于点和点

1)求该二次函数的解析式;

2)已知该函数图像的对称轴上存在一点,使得的周长最小.请求出点的坐标;

3)在(2)的条件下,在轴上找一点,使得是等腰三角形,请直接写出所有符合条件的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠BAC30°,点O是边AC的中点.

1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.

2)将图1向右平移到图2位置,在图2中,连结AA1AC1CC1.求证:四边形AA1CC1是矩形;

3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2A2CCC2

请你直接写出m的值和四边形AA2CC2的形状;

AB,请直接写出AA2的长.

查看答案和解析>>

同步练习册答案