精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AD平分∠BAC,EF垂直平分AD,且交AB于E,交AC于F,试判断四边形AEDF的形状?并说明理由.

解:四边形AEDF是菱形.
理由:∵EF垂直平分AD,
∴AE=DE,AF=DF,
∴∠EAD=∠EDA,∠FAD=∠FDA,
∵AD平分∠BAC,
∴∠EAD=∠FAD,
∴∠ADE=∠ADF,
∵在△ADE和△AFD中,

∴△ADE≌△AFD(ASA),
∴AE=AF,
∴AE=DE=DF=AF,
∴四边形AEDF是菱形.
分析:由EF垂直平分AD,根据线段垂直平分线的性质可得AE=DE,AF=DF,又由AD平分∠BAC,易证得△ADE≌△AFD,则可得AE=AF,即可得AE=DE=DF=AF,则可判定四边形AEDF是菱形.
点评:此题考查了菱形的判定、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案