精英家教网 > 初中数学 > 题目详情
2、已知x为正整数,解不等式:12x+5<10x+15.
分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
解答:解:解不等式:12x+5<10x+15
移项得:12x-10x<15-5
即2x<10
∴x<5
则x的值是1或2或3或4.
点评:本题主要考查了不等式的解法,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

课本第五册第65页有一题:
已知一元二次方程ax2-
2
bx+c=0的两个根满足|x1-x2|=
2
,且a,b,c分别是△ABC的∠A,∠B,∠C的对边.若a=c,求∠B的度数.
小敏解得此题的正确答案“∠B=120°”后,思考以下问题,请你帮助解答.
(1)若在原题中,将方程改为ax2-
3
bx+c=0,要得到∠B=120°,而条件“a=c”不变,那么应对条件中的|x1-x2|的值作怎样的改变并说明理由;
(2)若在原题中,将方程改为ax2-
n
bx+c=0(n为正整数,n≥2),要得到∠B=120°,而条件“a=c”不变,那么条件中的|x1-x2|的值应改为多少?(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:已知方程x-
1
x
=1
1
2
的解是x1=2,x2=-
1
2

x-
1
x
=2
2
3
的解是x1=3,x2=-
1
3

x-
1
x
=3
3
4
的解是x1=4,x2=-
1
4

=4
4
5
的解是x1=5,x2=-
1
5

问题:(1)写出方程x-
1
x
=10
10
11
的解;
(2)观察上述方程及其解,再设想x-
1
x
=n+
n
n+1
(n为正整数)的解(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知:两个正整数的和与积相等,求这两个正整数.
解:不妨设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,(*)
则ab=a+b≤b+b=2b,所以a≤2,
因为a为正整数,所以a=1或2,
①当a=1时,代入等式(*),得1•b=1+b,b不存在;
②当a=2时,代入等式(*),得2•b=2+b,b=2.
所以这两个正整数为2和2.
仔细阅读以上材料,根据阅读材料的启示,思考是否存在三个正整数,它们的和与积相等试说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:两个正整数的和与积相等,求这两个正整数.
解:设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,…(*)
则ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因为a为正整数,所以a=1或2.
①当a=1时,代入等式(*),得1•b=1+b,b不存在;
②当a=2时,代入等式(*),得2•b=2+b,b=2.
所以这两个正整数为2和2.
仿照以上阅读材料的解法解答下列问题:
已知:三个正整数的和与积相等,求这三个正整数.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年山东泰州市姜堰区九年级第一学期期末调研数学试卷(解析版) 题型:解答题

已知,关于x的二次函数,(k为正整数).

(1)若二次函数的图象与x轴有两个交点,求k的值.

(2)若关于x的一元二次方程(k为正整数)有两个不相等的整数解,点A(m,y1),B(m+1,y2),C(m+2,y3)都在二次函数(k为正整数)图象上,求使y1≤y2≤y3成立的m的取值范围.

(3)将(2)中的抛物线平移,当顶点至原点时,直线y=2x+b交抛物线于A(-1,n)、B(2,t)两点,问在y轴上是否存在一点C,使得△ABC的内心在y轴上.若存在,求出点C的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案