精英家教网 > 初中数学 > 题目详情
8.如图,E为?ABCD中DC边的延长线上一点,且CE=DC.判断AB与OF的位置关系和数量关系,并说明理由.

分析 本题可先证明△ABF≌△ECF,从而得出BF=CF,这样就得出了OF是△ABC的中位线,从而利用中位线定理即可得出线段OF与线段AB的关系.

解答 解:AB=2OF.AB∥OF;理由如下:
∵四边形ABCD是平行四边形,
∴AB=CD,OA=OC.
∴∠BAF=∠CEF,∠ABF=∠ECF.
∵CE=DC,
在平行四边形ABCD中,CD=AB,
∴AB=CE.
∴在△ABF和△ECF中,$\left\{\begin{array}{l}{∠BAF=∠CEF}&{\;}\\{AB=CE}&{\;}\\{∠ABF=∠BCF}&{\;}\end{array}\right.$,
∴△ABF≌△ECF(ASA),
∴BF=CF.
∵OA=OC,
∴OF是△ABC的中位线,
∴AB=2OF,AB∥OF.

点评 此题主要考查了平行四边形的性质,全等三角形的性质与判定及三角形的中位线定理,综合的知识点比较多,解答本题的关键是判断出OF是△ABC的中位线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.两个有理数a,b在数轴上的位置如图所示,则下列关系式成立的是(  )
A.-a<-b<a<bB.a<b<-a<-bC.b<-a<a<-bD.-b<a<-a<b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知?ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.
(1)若AB=5,CF=3,求DE的长;
(2)求证:AB=CF+DG.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.(1)如图1,在△ABC中,点O是∠ABC和∠ACB的平分线的交点,若∠A=α,则∠BOC=90°+$\frac{α}{2}$;如图2,∠CBO=$\frac{1}{3}$∠ABC,∠BCO=$\frac{1}{3}$∠ACB,∠A=α,则∠BOC=120°+$\frac{1}{3}$α(用α表示)
(2)如图3,∠CBO=$\frac{1}{3}$∠DBC,∠BCO=$\frac{1}{3}$∠ECB,∠A=α,请猜想∠BOC=120°-$\frac{1}{3}$α(用α表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在平面直角坐标系中,点A(3,m)在第四象限,若点A关于x轴的对称点B在直线y=-x+4上,则m的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.在△ABC中,D在BC上,E在AD上,连结BE,并延长交AC于F,若3BD=2CD,AE=DE,则$\frac{AF}{FC}$=$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.方程组$\left\{\begin{array}{l}{x+y=3}\\{2x=4}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知△ABD,△BCE,△ACF都是等边三角形,求证:四边形ADEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知两个正数x,y满足x+y=7,则$\sqrt{{x}^{2}+4}+\sqrt{{y}^{2}+9}$的最小值为$\sqrt{74}$.此时x的值为$\frac{14}{5}$.(提示:若借助网格或坐标系,就可以从数形结合的角度来看$\sqrt{{x}^{2}+4}$,例如可以把$\sqrt{{3}^{2}+4}$看做边长为3和4的直角三角形的斜边)

查看答案和解析>>

同步练习册答案