精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=( )时,则四边形AECF是正方形.
A.30°
B.45°
C.60°
D.90°

【答案】D
【解析】解:过点E,F作EH⊥BD,FG⊥BD, ∵CE,CF为∠ACB,∠ACD的角平分线,
∴∠ECF=90°.
∵MN∥BC,
∴∠FEC=∠ECH,
∵∠ECH=∠ECO,
∴∠FEC=∠ECO,
∴OE=OC.
同理OC=OF,
∴OE=OF,
∵点O运动到AC的中点,
∴OA=OC,
∴四边形AECF为一矩形,
若∠ACB=90°,则CE=CF,
∴四边形AECF为正方形.
故选:D.

由题意可得四边形AECF为一矩形,要使四边形AECF是正方形,只需添加一条件,使其邻边相等即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义运算 = ,若a≠﹣1,b≠﹣1,则下列等式中不正确的是(
A. × =1
B. + =
C.( 2=
D. =1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ab是实数xa2+b2+24,y=2(3a+4b),xy的大小关系是(  

A. xy B. xy C. xy D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.

(1)若AB=AC,点E在AD延长线上.
当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=°,
∠BEA=°;
(2)如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);
(3)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3m≠0)与x轴交于A30),B两点.

1)求抛物线的表达式及点B的坐标;

2)当﹣2x3时的函数图象记为G,求此时函数y的取值范围;

3)在(2)的条件下,将图象Gx轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C4.2)的直线y=kx+bk≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平移前后两个图形__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)求证:Rt△ADE与Rt△BEC全等;
(2)求证:△CDE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(a﹣2)2的结果是(
A.a2﹣4
B.a2﹣2a+4
C.a2﹣4a+4
D.a2+4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在5×5的正方形网格中,每个小正方形的边长为1,请在所给网格中按下列要求画出图形.
(1)(i)已知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为 ,且点B在格点上. (ii)以上题所画的线段AB为一边,另外两条边长分别为 .画一个△ABC,使点C在格点上(只需画出符合条件的一个三角形).
(2)所画出的△ABC的边AB上的高线长为 . (直接写出答案)

查看答案和解析>>

同步练习册答案