精英家教网 > 初中数学 > 题目详情

【题目】反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1=_____,k2=____,一次函数的图象交x轴于点_____

【答案】﹣2﹣(2,0)

【解析】

由两函数的交点为MN,将N的坐标代入反比例函数中求出k1的值,将两点坐标代入一次函数解析式中,求出k2b的值,确定出一次函数解析式,令y=0求出x的值,即为一次函数与x轴交点的横坐标,即可确定出一次函数与x轴的交点坐标.

M(3,)和点N(1,2)为两函数的交点,

x=1,y=2代入反比例函数y=中得:2=,即k1=2;

将两点坐标代入y=k2x+b得:

解得:k1,b=

∴一次函数解析式为y=x+

y=0,解得:x=2,

∴一次函数与x轴交点为(2,0).

故答案为:2;;(2,0)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是高,CE是中线,DG垂直平分CE连接DE

1)求证:DCBE

2)若∠AEC72°,求∠BCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.

(1)如图1,四边形ABCD内接于⊙O,DCB﹣ADC=A,求证:四边形ABCD为圆内接倍角四边形;

(2)在(1)的条件下,⊙O半径为5.

①若AD为直径,且sinA=,求BC的长;

②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是  

(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC和DEB中,已知AB=DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC在平面直角坐标系中的位置如图所示.将ABC向右平移6个单位长度,再向下平移6个单位长度得到A1B1C1(图中每个小方格边长均为1个单位长度)

(1)在图中画出平移后的A1B1C1

(2)直接写出A1B1C1各顶点的坐标.

3)求出ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:数和形是数学的两个主要研究对象,我们经常运用数形结合,树形转化的方法解决一些数学问题,小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1x1y1),P2x2y2),可通过构造直角三角形利用图1得到结论:P1P2=,他还利用图2证明了线段P1P2的中点Pxy),P的坐标公式:x=y=

启发应用:

如图3:在平面直角坐标系中,已知A80),B06),C17),M经过原点O及点AB

1)求⊙M的半径及圆心M的坐标;

2)判断点C与⊙M的位置关系,并说明理由;

3)若∠BOA的平分线交AB于点N,交⊙M于点E,分别求出OE的表达式y1,过点M的反比例函数的表达式y2,并根据图象,当y2y10时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.

(1)建立如图所示的平面直角坐标系,求抛物线的解析式.

(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,

问:球出手时,他距离地面的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列解题过程

已知abc为△ABC为三边,且满足a2c2b2c2a4b4,试判断△ABC的形状

解:∵a2c2b2c2a4b4

c2(a2b2)(a2b2)(a2b2)

c2a2b2

∴△ABC是直角三角形

回答下列问题:

(1)上述解题过程,从哪一步开始出现错误?请写出该步的序号________

(2)错误原因为________

(3)本题正确结论是什么,并说明理由.

查看答案和解析>>

同步练习册答案