精英家教网 > 初中数学 > 题目详情
17.已知xm=2,xn=3.求x2m+n的值.

分析 根据幂的乘方和积的乘方、同底数幂的乘法法则求解.

解答 解:x2m+n
=x2m•xn
=2×2×3
=12.

点评 本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.先化简,再求代数式$\frac{a}{{a}^{2}+2a+1}$÷(1-$\frac{1}{a+1}$)的值,其中a=tan60°-$\sqrt{2}$sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简再求值:
(1)已知x=$\sqrt{3}$,求代数式(x-2)2-(x-2)(x+2)+2$\sqrt{3}$的值.
(2)已知a=$\sqrt{3}$+$\sqrt{2}$,b=$\sqrt{3}$-$\sqrt{2}$,求a2-ab+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.小明和小新同时上学,从家到学校的距离都是2km,他们走路的速度是6km/h,跑步的速度为10km/h,请你根据以上信息,设计一个可以用一元一次不等式解决的问题.并给出解决方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.从?ABCD的一个钝角顶点向对边分别作高,如果两条高的夹角为45°,求?ABCD各个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,四边形ABCD为菱形,∠BAD=60°,E为直线BD上的动点(点E不与点B和点D重合),直线CE绕C点顺时针旋转60°与直线AD相交于点F,连接EF.
(1)如图①,当点E在线段BD上时,∠CEF=60度;
(2)如图②,当点E在BD延长线上时,试判断∠DEF+∠DFE与∠CEF度数之间的关系,并说明理由;
(3)如图③,若四边形ABCD为平行四边形,∠DBC=∠DCB=45°,E为直线BD上的动点(点E不与点B和点D重合),射线CE绕C点顺时针旋转45°与直线AD相交于点F,连接EF,探究∠DEF+∠DFE与∠CEF度数之间的关系.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.【提出问题】如图①,在梯形ABCD中,AD∥BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?
【探究过程】小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD∥BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?
如图③,过点D做DE∥AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=$\frac{1}{2}$xy.
以下是几位同学的对话:
A同学:因为y=$\sqrt{100-{x}^{2}}$,所以S△DBE=$\frac{1}{2}$x$\sqrt{100-{x}^{2}}$,求这个函数的最大值即可.
B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=$\frac{1}{2}$xy的最大值
C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.
(1)请选择A同学或者B同学的方法,完成解题过程.
(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)
【解决问题】根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图:△ABC和直线MN,求作△A1B1C1,使它与△ABC关于直线MN对称(不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程:
(1)4(2x+3)=8(1-x)-5(x-2);
(2)x+$\frac{2x-1}{3}$=1-$\frac{x-1}{2}$.

查看答案和解析>>

同步练习册答案