精英家教网 > 初中数学 > 题目详情

【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).

【答案】
(1)解:56÷20%=280(名),

答:这次调查的学生共有280名


(2)解:280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),

补全条形统计图,如图所示,

根据题意得:84÷280=30%,360°×30%=108°,

答:“进取”所对应的圆心角是108°


(3)解:由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:

A

B

C

D

E

A

(A,B)

(A,C)

(A,D)

(A,E)

B

(B,A)

(B,C)

(B,D)

(B,E)

C

(C,A)

(C,B)

(C,D)

(C,E)

D

(D,A)

(D,B)

(D,C)

(D,E)

E

(E,A)

(E,B)

(E,C)

(E,D)

用树状图为:

共20种情况,恰好选到“C”和“E”有2种,

∴恰好选到“进取”和“感恩”两个主题的概率是


【解析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在下列条件中,不能作为判断ABD≌△BAC的条件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将ABC沿DEHGEF分别翻折,三个顶点均落在点O处,且EAEB重合于线段EO,若∠DOH=78°,则∠FOG的度数为( ).

A. 78° B. 102° C. 112° D. 120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,在ABC中,∠BAC=60°,AD=AEBECD交于点F且∠DFE=120°.BE的延长线上截取ET=DC,连接AT.

(1)求证:∠ADC=AET

(2)求证:AT=AC

(3)BC边上的中线APBE交于Q.求证:∠QAB=QBA.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两位同学将一个二次三项式因式分解,一位同学因看错了一次项系数而分解成2,另一位同学因看错了常数项而分解成2,请将原多项式因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于EF长为半径画弧,两弧交于点P,作射线BPAC于点D,则∠BDC为(  )度.

A. 65 B. 75 C. 80 D. 85

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,边上的高,则边的长为( )

A. 4 B. 14 C. 4 或14 D. 8或14

查看答案和解析>>

同步练习册答案