精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

【答案】
(1)

解:根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),

把点A(0,4)代入上式得:a=

∴y= (x﹣1)(x﹣5)= x2 x+4= (x﹣3)2

∴抛物线的对称轴是:x=3


(2)

解:P点坐标为(3, ).

理由如下:

∵点A(0,4),抛物线的对称轴是x=3,

∴点A关于对称轴的对称点A′的坐标为(6,4)

如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.

设直线BA′的解析式为y=kx+b,

把A′(6,4),B(1,0)代入得

解得

∴y= x﹣

∵点P的横坐标为3,

∴y= ×3﹣ =

∴P(3, ).


(3)

解:在直线AC的下方的抛物线上存在点N,使△NAC面积最大.

设N点的横坐标为t,此时点N(t, t2 t+4)(0<t<5),

如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,

由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣ x+4,

把x=t代入得:y=﹣ t+4,则G(t,﹣ t+4),

此时:NG=﹣ t+4﹣( t2 t+4)=﹣ t2+4t,

∵AD+CF=CO=5,

∴SACN=SANG+SCGN= AD×NG+ NG×CF= NGOC= ×(﹣ t2+4t)×5=﹣2t2+10t=﹣2(t﹣ 2+

∴当t= 时,△CAN面积的最大值为

由t= ,得:y= t2 t+4=﹣3,

∴N( ,﹣3)


【解析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t, t2 t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程(组

(1) 5x3 40 (2)4 x 12 9

(3) (4 )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的两外角平分线交于点P,易证∠P=90°- A;ABC的两内角的平分线交于点Q,易证∠BQC=90°+A;那么△ABC的内角平分线BM与外角平分CM的夹角∠M=_____A.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(参考数据:sin22°≈ ,cos22° ,tan22
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠A=150°.第一步△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行( )步.

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE,动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为__________秒时.△ABP△DCE全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.

(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,添加以下条件,不能判定的是(

A. B. C. D.

查看答案和解析>>

同步练习册答案