精英家教网 > 初中数学 > 题目详情

【题目】如图,已知,添加以下条件,不能判定的是(

A. B. C. D.

【答案】C

【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.

A、A=D,ABC=DCB,BC=BC,符合AAS定理,即能推出ABC≌△DCB,故本选项错误;

B、ABC=DCB,BC=CB,ACB=DBC,符合ASA定理,即能推出ABC≌△DCB,故本选项错误;

C、ABC=DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出ABC≌△DCB,故本选项正确;

D、AB=DC,ABC=DCB,BC=BC,符合SAS定理,即能推出ABC≌△DCB,故本选项错误;

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,边上的高,则边的长为( )

A. 4 B. 14 C. 4 或14 D. 8或14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,

(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:

(1)表示乙离A地的距离与时间关系的图象是 (填);

(2)甲的速度是 km/h,乙的速度是 km/h;

(3)甲出发多少小时两人恰好相距5km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.

(1)求证:DEF是等腰三角形;

(2)当∠A=40°时,求∠DEF的度数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),康康依据图象写出了四个结论:
①如果点(﹣ ,y1)和(2,y2)都在抛物线上,那么y1<y2
②b2﹣4ac>0;
③m(am+b)<a+b(m≠1的实数);
=﹣3.
康康所写的四个结论中,正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中, 厘米, 厘米,点DAB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______ 厘米/秒时,能够在某一时刻使BPDCQP全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABCADE中,∠BAC=DAE=90°AB=ACAD=AE,点CDE三点在同一条直线上,连接BDBE.以下四个结论:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中结论正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案