精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE,动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为__________秒时.△ABP△DCE全等

【答案】313

【解析】

由条件可知BP=t,当点P在线段BC上时可知BP=CE,当点P在线段DA上时,则有AD=CE,分别可得到关于t的方程,可求得t的值.

解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=3,根据SAS证得△ABP≌△DCE,

由题意得:BP=t=3,

所以t=3,

因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=3,根据SAS证得△BAP≌△DCE,

由题意得:AP=16-t=3,

解得t=13.

所以,当t的值为313秒时.△ABP和△DCE全等.

故答案为: 313.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,将ABC沿DEHGEF分别翻折,三个顶点均落在点O处,且EAEB重合于线段EO,若∠DOH=78°,则∠FOG的度数为( ).

A. 78° B. 102° C. 112° D. 120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于EF长为半径画弧,两弧交于点P,作射线BPAC于点D,则∠BDC为(  )度.

A. 65 B. 75 C. 80 D. 85

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE∠BAC的外角平分线AD相交于点P,分别交ACBC的延长线于E,D.过PPF⊥ADAC的延长线于点H,交BC的延长线于点F,连接AFDH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.

(1)求圆的半径和点D的坐标;
(2)点A的坐标是 , 点B的坐标是 , sin∠ACB
(3)求经过C、A、B三点的抛物线解析式;
(4)设抛物线的顶点为F,证明直线FA与⊙D相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y= 的图象交于A,B两点,则四边形MAOB的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,边上的高,则边的长为( )

A. 4 B. 14 C. 4 或14 D. 8或14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),康康依据图象写出了四个结论:
①如果点(﹣ ,y1)和(2,y2)都在抛物线上,那么y1<y2
②b2﹣4ac>0;
③m(am+b)<a+b(m≠1的实数);
=﹣3.
康康所写的四个结论中,正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案